产品: PPAR alpha 抗体
货号: AF5301
描述: Rabbit polyclonal antibody to PPAR alpha
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat
预测: Bovine, Horse, Sheep, Rabbit, Dog, Xenopus
分子量: 52 kDa; 52kD(Calculated).
蛋白号: Q07869
RRID: AB_2837786

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Bovine(100%), Horse(88%), Sheep(100%), Rabbit(100%), Dog(100%), Xenopus(100%)
克隆:
Polyclonal
特异性:
PPAR alpha Antibody detects endogenous levels of total PPAR alpha.
RRID:
AB_2837786
引用格式: Affinity Biosciences Cat# AF5301, RRID:AB_2837786.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

hPPAR; MGC2237; MGC2452; NR1C1; Nuclear receptor subfamily 1 group C member 1; OTTHUMP00000197740; OTTHUMP00000197741; Peroxisome proliferative activated receptor alpha; Peroxisome proliferator activated receptor alpha; Peroxisome proliferator-activated receptor alpha; PPAR; PPAR-alpha; ppara; PPARA_HUMAN; PPARalpha;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
Q07869 PPARA_HUMAN:

Skeletal muscle, liver, heart and kidney. Expressed in monocytes (PubMed:28167758).

描述:
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety (By similarity). Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids.
序列:
MVDTESPLCPLSPLEAGDLESPLSEEFLQEMGNIQEISQSIGEDSSGSFGFTEYQYLGSCPGSDGSVITDTLSPASSPSSVTYPVVPGSVDESPSGALNIECRICGDKASGYHYGVHACEGCKGFFRRTIRLKLVYDKCDRSCKIQKKNRNKCQYCRFHKCLSVGMSHNAIRFGRMPRSEKAKLKAEILTCEHDIEDSETADLKSLAKRIYEAYLKNFNMNKVKARVILSGKASNNPPFVIHDMETLCMAEKTLVAKLVANGIQNKEAEVRIFHCCQCTSVETVTELTEFAKAIPGFANLDLNDQVTLLKYGVYEAIFAMLSSVMNKDGMLVAYGNGFITREFLKSLRKPFCDIMEPKFDFAMKFNALELDDSDISLFVAAIICCGDRPGLLNVGHIEKMQEGIVHVLRLHLQSNHPDDIFLFPKLLQKMADLRQLVTEHAQLVQIIKKTESDAALHPLLQEIYRDMY

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Bovine
100
Sheep
100
Dog
100
Xenopus
100
Rabbit
100
Horse
88
Pig
0
Zebrafish
0
Chicken
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - Q07869 作为底物

Site PTM Type Enzyme
S6 Phosphorylation
S12 Phosphorylation P28482 (MAPK1) , P27361 (MAPK3)
S21 Phosphorylation P27361 (MAPK3) , P28482 (MAPK1)
S45 Phosphorylation
S179 Phosphorylation P05771-2 (PRKCB) , P17252 (PRKCA)
K185 Sumoylation
S230 Phosphorylation P05771-2 (PRKCB) , P17252 (PRKCA)

研究背景

功能:

Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2.

细胞定位:

Nucleus.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Skeletal muscle, liver, heart and kidney. Expressed in monocytes.

亚基结构:

Heterodimer; with RXRA. This heterodimerization is required for DNA binding and transactivation activity. Interacts with NCOA3 coactivator. Interacts with CITED2; the interaction stimulates its transcriptional activity. Also interacts with PPARBP in vitro. Interacts with AKAP13, LPIN1, PRDM16 and coactivator NCOA6. Interacts with ASXL1 and ASXL2. Interacts with PER2. Interacts with SIRT1; the interaction seems to be modulated by NAD(+) levels. Interacts with CRY1 and CRY2 (By similarity).

蛋白家族:

Belongs to the nuclear hormone receptor family. NR1 subfamily.

研究领域

· Environmental Information Processing > Signal transduction > cAMP signaling pathway.   (View pathway)

· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.

· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).

· Human Diseases > Infectious diseases: Viral > Hepatitis C.

· Organismal Systems > Endocrine system > PPAR signaling pathway.

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

· Organismal Systems > Endocrine system > Glucagon signaling pathway.

文献引用

1). Regulatory effects mediated by ulvan oligosaccharide and its zinc complex on lipid metabolism in high-fat diet-fed mice. Carbohydrate Polymers (PubMed: 36372481) [IF=11.2]

2). Hepatic NCoR1 deletion exacerbates alcohol-induced liver injury in mice by promoting CCL2-mediated monocyte-derived macrophage infiltration. Acta Pharmacologica Sinica (PubMed: 35149852) [IF=8.2]

3). β-patchoulene improves lipid metabolism to alleviate non-alcoholic fatty liver disease via activating AMPK signaling pathway. BIOMEDICINE & PHARMACOTHERAPY (PubMed: 33341045) [IF=7.5]

Application: WB    Species: Human    Sample: L02 cell

Fig. 6. β-PAE promotes the expression of hepatic lipid oxidation-related proteins and genes in HFD-fed rats. (A–G) Western blot analysis on the expression of SIRT1, PGC-1α, PPARα, FGF21, CPT-1a and ACOX1; (H–K) The mRNA expression of SIRT1, PPARα, CPT-1a and ACOX1. Data are presented as the mean ± SD (n = 6~8). ##p < 0.01 vs. NC group; *p < 0.05, **p < 0.01 vs. Model group.

4). Yogurt-derived Lactobacillus plantarum Q16 alleviated high-fat diet-induced non-alcoholic fatty liver disease in mice. Food Science and Human Wellness [IF=7.0]

Application: WB    Species: Mouse    Sample:

Fig. 5. Effects ofL. plantarum Q16 on key proteins involved in hepatic lipid metabolism in HFD-fed obese mice. Data are presented as mean ± SD (n = 6). Different lowercase alphabet letters were significantly different at the level of P < 0.05.

5). Probiotic Yogurt Alleviates High-Fat Diet-Induced Lipid Accumulation and Insulin Resistance in Mice via the Adiponectin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY (PubMed: 36695046) [IF=6.1]

6). Methyl Brevifolincarboxylate Attenuates Free Fatty Acid-Induced Lipid Metabolism and Inflammation in Hepatocytes through AMPK/NF-κB Signaling Pathway. International Journal of Molecular Sciences (PubMed: 34576229) [IF=5.6]

Application: WB    Species: Human    Sample: SK-HEP-1 cells

Figure 3 Effect of methyl brevifolincarboxylate (MBC) on expression of lipogenesis and lipid oxidation mRNA and proteins in OA-treated SK-HEP-1 cells (A), and primary murine hepatocytes (B). Cells were treated with 0.5 mM of OA, and different concentrations of MBC (0, 20, 40, 60, and 80μM) for 48 h. Total RNA was isolated using a GENEzol reagent and mRNA was measured using qRT-PCR. Target gene mRNA levels were normalized to a reference gene β-actin. (C) Protein expression of FASN, ACC1, SREBP-1c, PPAR-α and (D) p-AMPK were detected by Western blot. All results are expressed as mean ± SD of three independent experiments. Data bars with similar letters were not significantly different (p ≤ 0.05).

7). Effects of Poria cocos extract on metabolic dysfunction-associated fatty liver disease via the FXR/PPARα-SREBPs pathway. Frontiers in Pharmacology (PubMed: 36278226) [IF=5.6]

Application: WB    Species: Rat    Sample:

FIGURE 5 EPC regulated the lipid metabolism-related genes and proteins inMAFLD rats. (A) mRNA abundances of FASN. (B) mRNA abundances of PPARα (PPARΑ). (C) mRNA abundances of PPARγ (PPARG). (D) mRNA abundances of RXRα. (E) mRNA abundances of CYP19A1. (F) mRNA abundances of NR3C1. (G) mRNA abundances of SREBP-1c. (H) mRNA abundances of HMGCR. (I) mRNA abundances of SCD. n = 6; (J) Relative expression of protein SCD. (K) Relative expression of protein PPARα. (L) Relative expression of protein FASN. (M) Relative expression of protein p-JNK. (N) Relative expression of protein p-NF-κB. (O) Relative expression of protein CYP19A1. (P) Relative expression of protein NR3C1. (Q-R) Representative immunoblotting images of β-actin, SCD, PPARα, FASN,CYP19A1, NR3C1, JNK, p-JNK, NF-κB, pNF-κB; n = 4, data are presented as mean ± SEM. One-way analysis of variance (ANOVA) was conducted for the group comparison. *p < 0.05, **p < 0.01, ***p < 0.001 vs MOD group. FASN, fatty acid synthase; PPARα/γ, peroxisome proliferator-activated receptor alpha/gamma; RXRa, retinoic acid receptor alpha; SREBP-1c, sterol regulatory element binding protein 1c; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; SCD, Stearoyl-CoA desaturase; p-JNK, phosphorylation (p) -stress-activated protein kinase JNK; NF-κB, nuclear factor kappa B.

8). Patchouli alcohol ameliorates acute liver injury via inhibiting oxidative stress and gut-origin LPS leakage in rats. International Immunopharmacology (PubMed: 34182243) [IF=5.6]

9). Lycopene attenuates oxidative stress-induced hepatic dysfunction of insulin signal transduction: involvement of FGF21 and mitochondria. The Journal of Nutritional Biochemistry (PubMed: 36057413) [IF=5.6]

10). β-patchoulene protects against non-alcoholic steatohepatitis via interrupting the vicious circle among oxidative stress, histanoxia and lipid accumulation in rats. International Immunopharmacology (PubMed: 34198236) [IF=5.6]

Application: WB    Species: Rat    Sample: liver tissue

Fig. 8. Effect of β-PAE on AMPK signalling pathway. (A) The hepatic mRNA expressions of AMPK α , SREBP-1c and PPAR α . (B) Representative bands of p-AMPK α , AMPK α , SREBP-1c and PPAR α . (C) Quantitative results of Western blot bands densities of p-AMPK α / AMPK α , SREBP-1c and PPAR α . (D) Spearman correlation between hepatic CD36 expression and AMPK signalling pathway-related proteins indicators, respectively. Data are presented as the mean ± SD (n = 3 ~ 6). ## P < 0.01 vs. NC group; **P < 0.01 vs. Model group.

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.