产品: CUL3 抗体
货号: DF6223
描述: Rabbit polyclonal antibody to CUL3
应用: WB IHC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
分子量: 89kDa; 89kD(Calculated).
蛋白号: Q13618
RRID: AB_2838189

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(100%)
克隆:
Polyclonal
特异性:
CUL3 Antibody detects endogenous levels of total CUL3.
RRID:
AB_2838189
引用格式: Affinity Biosciences Cat# DF6223, RRID:AB_2838189.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

CUL 3; Cul-3; cul3; CUL3_HUMAN; Cullin-3; Cullin3; KIAA0617; PHA2E;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
Q13618 CUL3_HUMAN:

Brain, spermatozoa, and testis (at protein level). Widely expressed.

描述:
CUL3 (Cullin-3) is a member of the cullin-based ubiquitin ligase family. By interacting with Hrt1 and BTB domain containing proteins, the complex functions as a CUL3-based E3 ligase to bring specific substrates to ubiquitinylation and degradation (1). The CUL3 complex has been shown to target many substrates involved in cell cycle progression (2), transcription (3), development and differentiation (4,5).
序列:
MSNLSKGTGSRKDTKMRIRAFPMTMDEKYVNSIWDLLKNAIQEIQRKNNSGLSFEELYRNAYTMVLHKHGEKLYTGLREVVTEHLINKVREDVLNSLNNNFLQTLNQAWNDHQTAMVMIRDILMYMDRVYVQQNNVENVYNLGLIIFRDQVVRYGCIRDHLRQTLLDMIARERKGEVVDRGAIRNACQMLMILGLEGRSVYEEDFEAPFLEMSAEFFQMESQKFLAENSASVYIKKVEARINEEIERVMHCLDKSTEEPIVKVVERELISKHMKTIVEMENSGLVHMLKNGKTEDLGCMYKLFSRVPNGLKTMCECMSSYLREQGKALVSEEGEGKNPVDYIQGLLDLKSRFDRFLLESFNNDRLFKQTIAGDFEYFLNLNSRSPEYLSLFIDDKLKKGVKGLTEQEVETILDKAMVLFRFMQEKDVFERYYKQHLARRLLTNKSVSDDSEKNMISKLKTECGCQFTSKLEGMFRDMSISNTTMDEFRQHLQATGVSLGGVDLTVRVLTTGYWPTQSATPKCNIPPAPRHAFEIFRRFYLAKHSGRQLTLQHHMGSADLNATFYGPVKKEDGSEVGVGGAQVTGSNTRKHILQVSTFQMTILMLFNNREKYTFEEIQQETDIPERELVRALQSLACGKPTQRVLTKEPKSKEIENGHIFTVNDQFTSKLHRVKIQTVAAKQGESDPERKETRQKVDDDRKHEIEAAIVRIMKSRKKMQHNVLVAEVTQQLKARFLPSPVVIKKRIEGLIEREYLARTPEDRKVYTYVA

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Xenopus
100
Chicken
100
Rabbit
100
Zebrafish
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - Q13618 作为底物

Site PTM Type Enzyme
S2 Acetylation
K6 Ubiquitination
K47 Ubiquitination
S50 Phosphorylation
Y58 Phosphorylation
T63 Phosphorylation
K68 Ubiquitination
K72 Ubiquitination
T164 Phosphorylation
K235 Ubiquitination
K254 Ubiquitination
K262 Ubiquitination
K271 Ubiquitination
K292 Ubiquitination
K301 Ubiquitination
T312 Phosphorylation
S318 Phosphorylation
S319 Phosphorylation
Y320 Phosphorylation
K326 Ubiquitination
K336 Ubiquitination
K349 Ubiquitination
R364 Methylation
Y387 Phosphorylation
K395 Ubiquitination
K401 Ubiquitination
K414 Ubiquitination
K425 Ubiquitination
K433 Ubiquitination
T442 Phosphorylation
K444 Ubiquitination
S456 Phosphorylation
K459 Acetylation
K459 Ubiquitination
K469 Ubiquitination
S478 Phosphorylation
T483 Phosphorylation
Y512 Phosphorylation
T519 Phosphorylation
R536 Methylation
S556 Phosphorylation
K569 Ubiquitination
S585 Phosphorylation
K638 Ubiquitination
K646 Ubiquitination
K651 Acetylation
K651 Ubiquitination
K668 Ubiquitination
K673 Ubiquitination
K680 Ubiquitination
S684 Phosphorylation
K700 Ubiquitination
K712 Ubiquitination
S737 Phosphorylation
Y764 Phosphorylation

研究背景

功能:

Core component of multiple cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. BCR complexes and ARIH1 collaborate in tandem to mediate ubiquitination of target proteins. As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1. The functional specificity of the BCR complex depends on the BTB domain-containing protein as the substrate recognition component. BCR(KLHL42) is involved in ubiquitination of KATNA1. BCR(SPOP) is involved in ubiquitination of BMI1/PCGF4, BRMS1, MACROH2A1 and DAXX, GLI2 and GLI3. Can also form a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex containing homodimeric SPOPL or the heterodimer formed by SPOP and SPOPL; these complexes have lower ubiquitin ligase activity. BCR(KLHL9-KLHL13) controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. BCR(KLHL12) is involved in ER-Golgi transport by regulating the size of COPII coats, thereby playing a key role in collagen export, which is required for embryonic stem (ES) cells division: BCR(KLHL12) acts by mediating monoubiquitination of SEC31 (SEC31A or SEC31B). BCR(KLHL3) acts as a regulator of ion transport in the distal nephron; by mediating ubiquitination of WNK4. The BCR(KLHL20) E3 ubiquitin ligase complex is involved in interferon response and anterograde Golgi to endosome transport: it mediates both ubiquitination leading to degradation and 'Lys-33'-linked ubiquitination. The BCR(KLHL21) E3 ubiquitin ligase complex regulates localization of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase and mediates the ubiquitination of AURKB. The BCR(KLHL22) ubiquitin ligase complex mediates monoubiquitination of PLK1, leading to PLK1 dissociation from phosphoreceptor proteins and subsequent removal from kinetochores, allowing silencing of the spindle assembly checkpoint (SAC) and chromosome segregation. The BCR(KLHL22) ubiquitin ligase complex is also responsible for the amino acid-stimulated 'Lys-48' polyubiquitination and proteasomal degradation of DEPDC5. Through the degradation of DEPDC5, releases the GATOR1 complex-mediated inhibition of the TORC1 pathway. The BCR(KLHL25) ubiquitin ligase complex is involved in translational homeostasis by mediating ubiquitination and subsequent degradation of hypophosphorylated EIF4EBP1 (4E-BP1). The BCR(KBTBD8) complex acts by mediating monoubiquitination of NOLC1 and TCOF1, leading to remodel the translational program of differentiating cells in favor of neural crest specification. Involved in ubiquitination of cyclin E and of cyclin D1 (in vitro) thus involved in regulation of G1/S transition. Involved in the ubiquitination of KEAP1, ENC1 and KLHL41. In concert with ATF2 and RBX1, promotes degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. The BCR(KCTD17) E3 ubiquitin ligase complex mediates ubiquitination and degradation of TCHP, a down-regulator of cilium assembly, thereby inducing ciliogenesis. The BCR(KLHL24) E3 ubiquitin ligase complex mediates ubiquitination of KRT14, controls KRT14 levels during keratinocytes differentiation, and is essential for skin integrity. The BCR(KLHL18) E3 ubiquitin ligase complex mediates the ubiquitination of AURKA leading to its activation at the centrosome which is required for initiating mitotic entry. The BCR(KEAP1) E3 ubiquitin ligase complex acts as a key sensor of oxidative and electrophilic stress by mediating ubiquitination and degradation of NFE2L2/NRF2, a transcription factor regulating expression of many cytoprotective genes.

翻译修饰:

Neddylated. Attachment of NEDD8 is required for the E3 ubiquitin-protein ligase activity of the BCR complex. Deneddylated via its interaction with the COP9 signalosome (CSN) complex.

细胞定位:

Nucleus. Golgi apparatus. Cell projection>Cilium>Flagellum. Cytoplasm>Cytoskeleton>Spindle. Cytoplasm. Cytoplasm>Cytoskeleton>Microtubule organizing center>Centrosome. Cytoplasm>Cytoskeleton>Spindle pole.
Note: Detected along the length of the sperm flagellum and in the cytoplasm of the germ cells (PubMed:28395323). Predominantly found in the nucleus in interphase cells, found at the centrosome at late G2 or prophase, starts accumulating at the spindle poles in prometaphase and stays on the spindle poles and the mitotic spindle at metaphase (PubMed:23213400).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Brain, spermatozoa, and testis (at protein level). Widely expressed.

亚基结构:

Forms neddylation-dependent homodimers. Component of multiple BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes formed of CUL3, RBX1 and a variable BTB domain-containing protein acting as both, adapter to cullin and substrate recognition subunit. The BCR complex may be active as a heterodimeric complex, in which NEDD8, covalently attached to one CUL3 molecule, binds to the C-terminus of a second CUL3 molecule. Interacts with RBX1, RNF7, CYCE and TIP120A/CAND1. Part of the BCR(SPOP) containing SPOP, and of BCR containing homodimeric SPOPL or the heterodimer formed by SPOP and SPOPL. Part of the probable BCR(KLHL9-KLHL13) complex with BTB domain proteins KLHL9 and KLHL13. Part of the BCR(KLHL41) complex containing KLHL41. Component of the BCR(KLHL12) E3 ubiquitin ligase complex, at least composed of CUL3 and KLHL12 and RBX1. Component of the BCR(KLHL3) E3 ubiquitin ligase complex, at least composed of CUL3 and KLHL3 and RBX1 (Probable). Part of the BCR(ENC1) complex containing ENC1. Part of a complex consisting of BMI1/PCGF4, CUL3 and SPOP. Part of a complex consisting of BRMS1, CUL3 and SPOP. Component of the BCR(KLHL21) E3 ubiquitin ligase complex, at least composed of CUL3, KLHL21 and RBX1. Component of the BCR(KLHL22) E3 ubiquitin ligase complex, at least composed of CUL3, KLHL22 and RBX1. Component of the BCR(KLHL25) E3 ubiquitin ligase complex, at least composed of CUL3, KLHL25 and RBX1. Part of a complex consisting of MACROH2A1, CUL3 and SPOP. Component of the BCR(KLHL42) E3 ubiquitin ligase complex, at least composed of CUL3 and KLHL42. Interacts with KLHL42 (via the BTB domain). Interacts with KATNA1; the interaction is enhanced by KLHL42. Component of the BCR(KBTBD8) E3 ubiquitin ligase complex, at least composed of CUL3, KBTBD8 and RBX1. Interacts with KCTD5, KLHL9, KLHL11, KLHL13, GAN, ZBTB16, KLHL3, KLHL15, KLHL20, KLHL36, GMCL2, BTBD1. Part of a complex that contains CUL3, RBX1 and GAN. Interacts (via BTB domain) with KLHL17; the interaction regulates surface GRIK2 expression. Interacts with KCTD7. Part of the BCR(GAN) complex containing GAN. Part of the BCR(KEAP1) complex containing KEAP1. Interacts with KLHL10 (By similarity). Interacts with KAT5 and ATF2. Interacts with DCUN1D3. Interacts with KCTD17 in the BCR(KCTD17) E3 ubiquitin ligase complex, at least composed of CUL3, KCTD17 and RBX1. Interacts (when neddylated) with ARIH1; leading to activate the E3 ligase activity of ARIH1. Interacts with COPS9 isoform 2. Interacts with PPP2R5B; this interaction is indirect and mediated through KLHL15-binding and leads to PPP2R5B proteasomal degradation. Interacts with RBBP8/CtIP; this interaction is indirect and mediated through KLHL15-binding and leads to RBBP8 proteasomal degradation. Interacts with KLHL24 in the BCR(KLHL24) E3 ubiquitin ligase complex, composed of CUL3, RBX1 and KLHL24. Interacts with RHOBTB2. Interacts with AURKA and KLHL18 (via BTB domain).

蛋白家族:

Belongs to the cullin family.

研究领域

· Environmental Information Processing > Signal transduction > Hedgehog signaling pathway.   (View pathway)

· Genetic Information Processing > Folding, sorting and degradation > Ubiquitin mediated proteolysis.   (View pathway)

文献引用

1). Benzo[a]pyrene treatment modulates Nrf2/Keap1 axis and changes the metabolic profile in rat lung cancer. Chemico-Biological Interactions (PubMed: 36736873) [IF=5.1]

2). Bioinformatics analysis identifies potential hub genes and crucial pathways in the pathogenesis of asthenozoospermia. BMC Medical Genomics (PubMed: 36471356) [IF=2.7]

Application: WB    Species: Human    Sample: normozoospermia and asthenozoospermia samples

Fig. 9 Hub genes expression in normozoospermia and asthenozoospermia samples A Expressions of four hub genes were validated by qRT-PCR in spermatozoa from normozoospermia and asthenozoospermia. B Expressions of four hub genes were validated by western blotting experiments in spermatozoa from normozoospermia and asthenozoospermia. *P 

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.