产品: | 磷酸化 PER2 (Ser662) 抗体 |
货号: | AF4301 |
描述: | Rabbit polyclonal antibody to Phospho-PER2 (Ser662) |
应用: | WB IHC |
反应: | Human, Mouse, Rat |
预测: | Pig, Horse, Rabbit, Dog, Chicken |
分子量: | 137kDa; 137kD(Calculated). |
蛋白号: | O15055 |
RRID: | AB_2844380 |
产品描述
*The optimal dilutions should be determined by the end user.
*Tips:
WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.
引用格式: Affinity Biosciences Cat# AF4301, RRID:AB_2844380.
展开/折叠
Circadian clock protein PERIOD 2; FASPS; FASPS1; hPER 2; hPER2; KIAA0347; OTTHUMP00000164476; PER 2; PER2; PER2_HUMAN; Period 2; Period 2 isoform 1; Period circadian clock 2; Period circadian protein 2; Period circadian protein homolog 2; Period homolog 2 (Drosophila); Period homolog 2; Period, Drosophila, homolog of, 2; Period2;
抗原和靶标
Widely expressed. Found in heart, brain, placenta, lung, liver, skeleatal muscle, kidney and pancreas. High levels in skeletal muscle and pancreas. Low levels in lung. Isoform 2 is expressed in keratinocytes (at protein level).
- O15055 PER2_HUMAN:
- Protein BLAST With
- NCBI/
- ExPASy/
- Uniprot
MNGYAEFPPSPSNPTKEPVEPQPSQVPLQEDVDMSSGSSGHETNENCSTGRDSQGSDCDDSGKELGMLVEPPDARQSPDTFSLMMAKSEHNPSTSGCSSDQSSKVDTHKELIKTLKELKVHLPADKKAKGKASTLATLKYALRSVKQVKANEEYYQLLMSSEGHPCGADVPSYTVEEMESVTSEHIVKNADMFAVAVSLVSGKILYISDQVASIFHCKRDAFSDAKFVEFLAPHDVGVFHSFTSPYKLPLWSMCSGADSFTQECMEEKSFFCRVSVRKSHENEIRYHPFRMTPYLVKVRDQQGAESQLCCLLLAERVHSGYEAPRIPPEKRIFTTTHTPNCLFQDVDERAVPLLGYLPQDLIETPVLVQLHPSDRPLMLAIHKKILQSGGQPFDYSPIRFRARNGEYITLDTSWSSFINPWSRKISFIIGRHKVRVGPLNEDVFAAHPCTEEKALHPSIQELTEQIHRLLLQPVPHSGSSGYGSLGSNGSHEHLMSQTSSSDSNGHEDSRRRRAEICKNGNKTKNRSHYSHESGEQKKKSVTEMQTNPPAEKKAVPAMEKDSLGVSFPEELACKNQPTCSYQQISCLDSVIRYLESCNEAATLKRKCEFPANVPALRSSDKRKATVSPGPHAGEAEPPSRVNSRTGVGTHLTSLALPGKAESVASLTSQCSYSSTIVHVGDKKPQPELEMVEDAASGPESLDCLAGPALACGLSQEKEPFKKLGLTKEVLAAHTQKEEQSFLQKFKEIRKLSIFQSHCHYYLQERSKGQPSERTAPGLRNTSGIDSPWKKTGKNRKLKSKRVKPRDSSESTGSGGPVSARPPLVGLNATAWSPSDTSQSSCPAVPFPAPVPAAYSLPVFPAPGTVAAPPAPPHASFTVPAVPVDLQHQFAVQPPPFPAPLAPVMAFMLPSYSFPSGTPNLPQAFFPSQPQFPSHPTLTSEMASASQPEFPSRTSIPRQPCACPATRATPPSAMGRASPPLFQSRSSSPLQLNLLQLEEAPEGGTGAMGTTGATETAAVGADCKPGTSRDQQPKAPLTRDEPSDTQNSDALSTSSGLLNLLLNEDLCSASGSAASESLGSGSLGCDASPSGAGSSDTSHTSKYFGSIDSSENNHKAKMNTGMEESEHFIKCVLQDPIWLLMADADSSVMMTYQLPSRNLEAVLKEDREKLKLLQKLQPRFTESQKQELREVHQWMQTGGLPAAIDVAECVYCENKEKGNICIPYEEDIPSLGLSEVSDTKEDENGSPLNHRIEEQT
种属预测
score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。
High(score>80) Medium(80>score>50) Low(score<50) No confidence
翻译修饰 - O15055 作为底物
Site | PTM Type | Enzyme | Source |
---|---|---|---|
Phosphorylation | Uniprot | ||
Ubiquitination | Uniprot | ||
S53 | Phosphorylation | Uniprot | |
S77 | Phosphorylation | Uniprot | |
K113 | Ubiquitination | Uniprot | |
S259 | Phosphorylation | Uniprot | |
K384 | Ubiquitination | Uniprot | |
K453 | Ubiquitination | Uniprot | |
K539 | Acetylation | Uniprot | |
K553 | Acetylation | Uniprot | |
S566 | O-Glycosylation | Uniprot | |
S580 | O-Glycosylation | Uniprot | |
S627 | Phosphorylation | Uniprot | |
T645 | Phosphorylation | Uniprot | |
T649 | Phosphorylation | Uniprot | |
T652 | Phosphorylation | Uniprot | |
S653 | O-Glycosylation | Uniprot | |
S662 | O-Glycosylation | Uniprot | |
S662 | Phosphorylation | P48730 (CSNK1D) , P49674 (CSNK1E) | Uniprot |
S665 | Phosphorylation | P48730 (CSNK1D) , P49674 (CSNK1E) | Uniprot |
S668 | O-Glycosylation | Uniprot | |
S668 | Phosphorylation | P49674 (CSNK1E) , P48730 (CSNK1D) | Uniprot |
S671 | O-Glycosylation | Uniprot | |
T734 | O-Glycosylation | Uniprot | |
K744 | Ubiquitination | Uniprot | |
S766 | Phosphorylation | Uniprot | |
T774 | Phosphorylation | Uniprot | |
T781 | Phosphorylation | Uniprot | |
S782 | Phosphorylation | Uniprot | |
S786 | Phosphorylation | Uniprot | |
S810 | Phosphorylation | Uniprot | |
T965 | O-Glycosylation | Uniprot | |
T968 | Phosphorylation | Uniprot | |
S977 | Phosphorylation | Uniprot | |
S983 | O-Glycosylation | Uniprot | |
S1105 | Phosphorylation | Uniprot | |
S1108 | Phosphorylation | Uniprot | |
S1109 | Phosphorylation | Uniprot | |
K1184 | Ubiquitination | Uniprot |
研究背景
Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndrome and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. PER1 and PER2 proteins transport CRY1 and CRY2 into the nucleus with appropriate circadian timing, but also contribute directly to repression of clock-controlled target genes through interaction with several classes of RNA-binding proteins, helicases and others transcriptional repressors. PER appears to regulate circadian control of transcription by at least three different modes. First, interacts directly with the CLOCK-ARTNL/BMAL1 at the tail end of the nascent transcript peak to recruit complexes containing the SIN3-HDAC that remodel chromatin to repress transcription. Second, brings H3K9 methyltransferases such as SUV39H1 and SUV39H2 to the E-box elements of the circadian target genes, like PER2 itself or PER1. The recruitment of each repressive modifier to the DNA seems to be very precisely temporally orchestrated by the large PER complex, the deacetylases acting before than the methyltransferases. Additionally, large PER complexes are also recruited to the target genes 3' termination site through interactions with RNA-binding proteins and helicases that may play a role in transcription termination to regulate transcription independently of CLOCK-ARTNL/BMAL1 interactions. Recruitment of large PER complexes to the elongating polymerase at PER and CRY termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. May propagate clock information to metabolic pathways via the interaction with nuclear receptors. Coactivator of PPARA and corepressor of NR1D1, binds rhythmically at the promoter of nuclear receptors target genes like ARNTL or G6PC. Directly and specifically represses PPARG proadipogenic activity by blocking PPARG recruitment to target promoters and thereby inhibiting transcriptional activation. Required for fatty acid and lipid metabolism, is involved as well in the regulation of circulating insulin levels. Plays an important role in the maintenance of cardiovascular functions through the regulation of NO and vasodilatatory prostaglandins production in aortas. Controls circadian glutamate uptake in synaptic vesicles through the regulation of VGLUT1 expression. May also be involved in the regulation of inflammatory processes. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1 and ATF4. Negatively regulates the formation of the TIMELESS-CRY1 complex by competing with TIMELESS for binding to CRY1.
Acetylated. Deacetylated by SIRT1, resulting in decreased protein stability.
Phosphorylated by CSNK1E and CSNK1D. Phosphorylation results in PER2 protein degradation. May be dephosphorylated by PP1.
Ubiquitinated, leading to its proteasomal degradation. Ubiquitination may be inhibited by CRY1.
Nucleus. Cytoplasm. Cytoplasm>Perinuclear region.
Note: Nucleocytoplasmic shuttling is effected by interaction with other circadian core oscillator proteins and/or by phosphorylation. Translocate to the nucleus after phosphorylation by CSNK1D or CSNK1E. Also translocated to the nucleus by CRY1 or CRY2. PML regulates its nuclear localization.
Nucleus>Nucleolus.
Widely expressed. Found in heart, brain, placenta, lung, liver, skeleatal muscle, kidney and pancreas. High levels in skeletal muscle and pancreas. Low levels in lung. Isoform 2 is expressed in keratinocytes (at protein level).
Homodimer. Component of the circadian core oscillator, which includes the CRY proteins, CLOCK or NPAS2, ARTNL/BMAL1 or ARTNL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS, and the PER proteins. Interacts with CLOCK-ARNTL/BMAL1 (off DNA).Interacts with ARNTL2/BMAL2. Interacts directly with PER1 and PER3, and through a C-terminal domain, with CRY1 and CRY2. Interacts, via its second PAS domain, with TIMELESS in vitro. Interacts with NFIL3. Different large complexes have been identified with different repressive functions. The core of PER complexes is composed of at least PER1, PER2, PER3, CRY1, CRY2, CSNK1D and/or CSNK1E. The large PER complex involved in the repression of transcriptional termination is composed of at least PER2, CDK9, DDX5, DHX9, NCBP1 and POLR2A (active). The large PER complex involved in the histone deacetylation is composed of at least HDAC1, PER2, SFPQ and SIN3A. The large PER complex involved in the histone methylation is composed of at least PER2, CBX3, TRIM28, SUV39H1 and/or SUV39H2; CBX3 mediates the formation of the complex. Interacts with SETX; the interaction inhibits termination of circadian target genes. Interacts with the nuclear receptors HNF4A, NR1D1, NR4A2, RORA, PPARA, PPARG and THRA; the interaction with at least PPARG is ligand dependent. Interacts with PML. Interacts (phosphorylated) with BTRC and FBXW11; the interactions trigger proteasomal degradation. Interacts with NONO and SFPQ. Interacts with SIRT1 and CAVIN3 (By similarity). Interacts with MAGEL2 (By similarity). Interacts with MAP1LC3B (By similarity). Interacts with HNF4A.
研究领域
· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.
· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.
· Human Diseases > Cancers: Specific types > Acute myeloid leukemia. (View pathway)
· Organismal Systems > Environmental adaptation > Circadian rhythm. (View pathway)
· Organismal Systems > Environmental adaptation > Circadian entrainment.
限制条款
产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。
产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。
Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。产品仅供科学研究使用。不用于诊断和治疗。
产品未经授权不得转售。
Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.