产品: ACSL4/FACL4 抗体
货号: DF12141
描述: Rabbit polyclonal antibody to ACSL4/FACL4
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
分子量: 79 kDa,74 kDa; 79kD(Calculated).
蛋白号: O60488
RRID: AB_2844946

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(83%)
克隆:
Polyclonal
特异性:
ACSL4/FACL4 Antibody detects endogenous levels of total ACSL4/FACL4.
RRID:
AB_2844946
引用格式: Affinity Biosciences Cat# DF12141, RRID:AB_2844946.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

ACS 4; ACS4; ACSL 4; Acsl4; ACSL4_HUMAN; acyl CoA synthetase 4; Acyl CoA synthetase long chain family member 4; FACL 4; FACL4; Fatty acid Coenzyme A ligase; fatty acid Coenzyme A ligase long-chain 4; LACS 4; LACS4; Lignoceroyl CoA synthase; Long chain 4; long chain acyl CoA synthetase 4; long chain fatty acid CoA ligase 4; long chain fatty acid Coenzyme A ligase 4; Long-chain acyl-CoA synthetase 4; Long-chain-fatty-acid--CoA ligase 4; MRX63; MRX68;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
序列:
MKLKLNVLTIILLPVHLLITIYSALIFIPWYFLTNAKKKNAMAKRIKAKPTSDKPGSPYRSVTHFDSLAVIDIPGADTLDKLFDHAVSKFGKKDSLGTREILSEENEMQPNGKVFKKLILGNYKWMNYLEVNRRVNNFGSGLTALGLKPKNTIAIFCETRAEWMIAAQTCFKYNFPLVTLYATLGKEAVVHGLNESEASYLITSVELLESKLKTALLDISCVKHIIYVDNKAINKAEYPEGFEIHSMQSVEELGSNPENLGIPPSRPTPSDMAIVMYTSGSTGRPKGVMMHHSNLIAGMTGQCERIPGLGPKDTYIGYLPLAHVLELTAEISCFTYGCRIGYSSPLTLSDQSSKIKKGSKGDCTVLKPTLMAAVPEIMDRIYKNVMSKVQEMNYIQKTLFKIGYDYKLEQIKKGYDAPLCNLLLFKKVKALLGGNVRMMLSGGAPLSPQTHRFMNVCFCCPIGQGYGLTESCGAGTVTEVTDYTTGRVGAPLICCEIKLKDWQEGGYTINDKPNPRGEIVIGGQNISMGYFKNEEKTAEDYSVDENGQRWFCTGDIGEFHPDGCLQIIDRKKDLVKLQAGEYVSLGKVEAALKNCPLIDNICAFAKSDQSYVISFVVPNQKRLTLLAQQKGVEGTWVDICNNPAMEAEILKEIREAANAMKLERFEIPIKVRLSPEPWTPETGLVTDAFKLKRKELRNHYLKDIERMYGGK

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Chicken
100
Rabbit
100
Xenopus
83
Zebrafish
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - O60488 作为底物

Site PTM Type Enzyme
S23 Phosphorylation
Y31 Phosphorylation
T34 Phosphorylation
K47 Ubiquitination
K49 Ubiquitination
K54 Ubiquitination
S57 Phosphorylation
T63 Phosphorylation
K89 Acetylation
K89 Ubiquitination
K92 Acetylation
S95 Phosphorylation
K113 Ubiquitination
K117 Ubiquitination
S140 Phosphorylation
T143 Phosphorylation
K148 Ubiquitination
K150 Ubiquitination
K211 Ubiquitination
C221 S-Nitrosylation
K223 Ubiquitination
Y227 Phosphorylation
K231 Ubiquitination
K312 Ubiquitination
S352 Phosphorylation
S353 Phosphorylation
K354 Ubiquitination
K356 Ubiquitination
K360 Ubiquitination
K367 Ubiquitination
K383 Ubiquitination
K388 Ubiquitination
K397 Acetylation
K397 Ubiquitination
K401 Acetylation
K401 Ubiquitination
Y404 Phosphorylation
K407 Ubiquitination
K413 Ubiquitination
Y415 Phosphorylation
K426 Ubiquitination
S447 Phosphorylation
Y483 Phosphorylation
T485 Phosphorylation
K498 Ubiquitination
K500 Ubiquitination
T508 Phosphorylation
K512 Ubiquitination
K536 Ubiquitination
Y541 Phosphorylation
Y582 Phosphorylation
S584 Phosphorylation
K587 Ubiquitination
K593 Ubiquitination
S607 Phosphorylation
K621 Ubiquitination
K651 Ubiquitination
K661 Ubiquitination
K670 Ubiquitination
S674 Phosphorylation
T679 Phosphorylation
T682 Phosphorylation
T686 Phosphorylation
K690 Acetylation
K690 Ubiquitination
K702 Ubiquitination

研究背景

功能:

Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially activates arachidonate and eicosapentaenoate as substrates. Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion.

细胞定位:

Mitochondrion outer membrane>Single-pass type III membrane protein. Peroxisome membrane>Single-pass type III membrane protein. Microsome membrane>Single-pass type III membrane protein. Endoplasmic reticulum membrane>Single-pass type III membrane protein. Cell membrane.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
蛋白家族:

Belongs to the ATP-dependent AMP-binding enzyme family.

研究领域

· Cellular Processes > Transport and catabolism > Peroxisome.   (View pathway)

· Cellular Processes > Cell growth and death > Ferroptosis.   (View pathway)

· Metabolism > Lipid metabolism > Fatty acid biosynthesis.

· Metabolism > Lipid metabolism > Fatty acid degradation.

· Metabolism > Global and overview maps > Metabolic pathways.

· Metabolism > Global and overview maps > Fatty acid metabolism.

· Organismal Systems > Endocrine system > PPAR signaling pathway.

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

文献引用

1). Selenium nanoparticles alleviate renal ischemia/reperfusion injury by inhibiting ferritinophagy via the XBP1/NCOA4 pathway. Cell communication and signaling : CCS, 2024 (PubMed: 39061070) [IF=8.4]

Application: IF/ICC    Species: Human    Sample:

Fig. 1. Renal tubular epithelial cells undergo ferroptosis in I/R-AKI. (A) Single-cell sequencing identified clusters in both sham-operated and I/R-operated kidneys at day 3 post-surgery, depicted in a t-distributed stochastic neighbor embedding (tSNE) map. PT, proximal tubule; DT, distal convoluted tubule; LOH, ascending loop of Henle; ECs, endothelial cells. (B) Average expression levels of mouse single cell type-specific genes are shown in pheatmap. Mean expression values of the genes were calculated in each cluster. The full list of cell types and genes is shown in Additional file1: Table S1. (C-E) Subtypes of PT with differentially expressed genes are illustrated in a tSNE plot (C), and the representative marker genes across the 3 subtypes of PT are depicted in pheatmap (D) and VlnPlot (E). (F-G) The expression levels of ferroptosis-associated genes Gpx4 and Acsl4 in the subtypes of PT were identified by FeaturePlot (F) and Dotplot (G). (H-I) Western blot (H) and statistical analysis (I) of the expression levels of GPX4 and SLC7A11 proteins in the renal cortex of sham-operated and I/R-operated mice post-surgery. ***p 

2). Med1 inhibits ferroptosis and alleviates liver injury in acute liver failure via Nrf2 activation. Cell & bioscience, 2024 (PubMed: 38678227) [IF=7.5]

3). Human umbilical cord mesenchymal stem cells ameliorate erectile dysfunction in rats with diabetes mellitus through the attenuation of ferroptosis. Stem Cell Research & Therapy, 2022 (PubMed: 36064453) [IF=7.5]

4). The ERK-cPLA2-ACSL4 axis mediating M2 macrophages ferroptosis impedes mucosal healing in ulcerative colitis. Free radical biology & medicine, 2024 (PubMed: 38367927) [IF=7.1]

5). Microbial metabolite deoxycholic acid-mediated ferroptosis exacerbates high-fat diet-induced colonic inflammation. Molecular metabolism, 2024 (PubMed: 38642891) [IF=7.0]

Application: WB    Species: Rat    Sample: IEC-6 cells and Caco-2 cells

Figure 3 Deoxycholic acid enhanced lipopolysaccharide-induced ferroptosis in intestinal epithelial cells (A–H) IEC-6 cells and Caco-2 cells were incubated with or without 10 ng/mL LPS for 12 h, followed by 200 μM DCA for 2 h. They were divided into four group (n = 6 in each group): control group, DCA group, LPS group and LPS + DCA group. (A) The relative mRNA expression level of GPX4 in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (B) The relative mRNA expression level of ACSL4 in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (C) The protein level of GPX4, ACSL4 and β-actin in each group of IEC-6 cells and Caco-2 cells. (D) Representative transmission electron microscopy images (scale bars, 1 μm) of cell and mitochondria, and Fe2+/Hoechst immunofluorescence in each group of IEC-6 cells. Mitochondria was showed by white arrows in the pictures. The red fluorescence is indicative of the presence of ferrous ions. (E) The content of Fe2+ in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (F) The content of GSH in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (G) The content of ROS in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (H) The content of MDA in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (I-K) IEC-6 cells were incubated 2 μM ferrostatin-1 (Fer-1) for 16 h, and then incubated with or without 10 ng/mL LPS for 12 h, followed by 200 μM DCA for 2 h. They were divided into six group (n = 5 or 6 in each group): control group, LPS group, LPS + DCA group, Fer-1 group, LPS + Fer-1 group and LPS + DCA + Fer-1 group. (I) The relative mRNA expression level of GPX4, ACSL4 and DMT1 in each group of IEC-6 cells (n = 6 in each group). (J) The content of GSH in each group of IEC-6 cells (n = 5 in each group). (K) The content of MDA in each group of IEC-6 cells (n = 5 in each group). Data are represented as mean ± SEM. ns P > 0.05, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001. ##P < 0.01, ####P < 0.0001. ∗ LPS group vs control group, LPS + DCA group vs LPS group. # LPS + Fer-1 group vs LPS group, LPS + DCA + Fer-1 group vs LPS + DCA group.

Application: IHC    Species: Mouse    Sample: colonic tissues

Figure 3 Deoxycholic acid enhanced lipopolysaccharide-induced ferroptosis in intestinal epithelial cells (A–H) IEC-6 cells and Caco-2 cells were incubated with or without 10 ng/mL LPS for 12 h, followed by 200 μM DCA for 2 h. They were divided into four group (n = 6 in each group): control group, DCA group, LPS group and LPS + DCA group. (A) The relative mRNA expression level of GPX4 in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (B) The relative mRNA expression level of ACSL4 in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (C) The protein level of GPX4, ACSL4 and β-actin in each group of IEC-6 cells and Caco-2 cells. (D) Representative transmission electron microscopy images (scale bars, 1 μm) of cell and mitochondria, and Fe2+/Hoechst immunofluorescence in each group of IEC-6 cells. Mitochondria was showed by white arrows in the pictures. The red fluorescence is indicative of the presence of ferrous ions. (E) The content of Fe2+ in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (F) The content of GSH in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (G) The content of ROS in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (H) The content of MDA in each group of IEC-6 cells and Caco-2 cells (n = 6 in each group). (I-K) IEC-6 cells were incubated 2 μM ferrostatin-1 (Fer-1) for 16 h, and then incubated with or without 10 ng/mL LPS for 12 h, followed by 200 μM DCA for 2 h. They were divided into six group (n = 5 or 6 in each group): control group, LPS group, LPS + DCA group, Fer-1 group, LPS + Fer-1 group and LPS + DCA + Fer-1 group. (I) The relative mRNA expression level of GPX4, ACSL4 and DMT1 in each group of IEC-6 cells (n = 6 in each group). (J) The content of GSH in each group of IEC-6 cells (n = 5 in each group). (K) The content of MDA in each group of IEC-6 cells (n = 5 in each group). Data are represented as mean ± SEM. ns P > 0.05, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001. ##P < 0.01, ####P < 0.0001. ∗ LPS group vs control group, LPS + DCA group vs LPS group. # LPS + Fer-1 group vs LPS group, LPS + DCA + Fer-1 group vs LPS + DCA group.

6). Rosmarinic acid Liposomes Suppress Ferroptosis in Ischemic Brain via Inhibition of TfR1 in BMECs.. PHYTOMEDICINE, 2024 [IF=6.7]

7). d-Borneol enhances cisplatin sensitivity via autophagy dependent EMT signaling and NCOA4-mediated ferritinophagy. PHYTOMEDICINE, 2022 (PubMed: 36030746) [IF=6.7]

8). Magnetic graphene oxide nanocomposites induce cytotoxicity in ADSCs via GPX4 regulating ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024 [IF=6.2]

9). Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytotherapy Research, 2023 (PubMed: 36882189) [IF=6.1]

10). Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury. Neural Regeneration Research, 2023 (PubMed: 36204858) [IF=5.9]

Application: WB    Species: Rat    Sample: spinal cord

Figure 3 EPO regulates the expression of ferroptotic biomarkers after SCI. (A) Western blot of the indicated proteins in injured tissues from the treatment groups. (B–H) Quantitative analysis of Tfr, Fpn, Fth, Acsl4 and 4-Hne protein expression at 14 dpi. Gapdh was used as the reference protein. (I, J) Quantitative reverse transcription polymerase chain reaction results of xCT and Gpx4 mRNA extracted from injured tissue at 7 dpi. β-Actin mRNA was used as the reference gene. (K) Quantitative analysis of reduced GSH from injured tissue at 7 dpi. All data are expressed as the mean ± SD (n = 5 in each group). *P < 0.05, **P < 0.01, ***P < 0.001 (one-way analysis of variance followed by Dunnett’s multiple comparisons test). 4-Hne: 4-Hydroxynonenal; Acsl4: acyl-coenzyme A synthetase long chain family member 4; dpi: day(s) post injury; EPO: erythropoietin; Fpn: ferroportin or solute carrier family 40 member 1; Fth: ferritin heavy chain; Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Gpx4: glutathione peroxidase 4; GSH: glutathione; ns: not significant; SCI: spinal cord injury; Tfr: transferrin receptor; xCT: the solute carrier family 7 member 11.

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.