产品: 磷酸化 Kv2.1 (Ser805) 抗体
货号: AF3440
描述: Rabbit polyclonal antibody to Phospho-Kv2.1 (Ser805)
应用: WB
反应: Human, Mouse, Rat
预测: Pig, Bovine, Horse, Sheep, Rabbit, Dog
分子量: 96kDa; 96kD(Calculated).
蛋白号: Q14721
RRID: AB_2834882

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1300 现货
 100ul RMB¥ 2400 现货
 200ul RMB¥ 3200 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(89%), Dog(100%)
克隆:
Polyclonal
特异性:
Phospho-Kv2.1 (Ser805) Antibody detects endogenous levels of Kv2.1 only when phosphorylated at Ser805.
RRID:
AB_2834882
引用格式: Affinity Biosciences Cat# AF3440, RRID:AB_2834882.
偶联:
Unconjugated.
纯化:
The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Delayed rectifier potassium channel 1; Delayed rectifier potassium channel Kv2.1; DRK 1; DRK1; h DRK1 K(+) channel; h-DRK1; hDRK 1; hDRK1; KCB 1; KCB1; KCNB1; KCNB1_HUMAN; KV2.1; Potassium channel protein DRK1; Potassium voltage gated channel shab related subfamily member 1; Potassium voltage-gated channel subfamily B member 1; Voltage-gated potassium channel subunit Kv2.1;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
Q14721 KCNB1_HUMAN:

Expressed in neocortical pyramidal cells (PubMed:24477962). Expressed in pancreatic beta cells (at protein level) (PubMed:12403834, PubMed:14988243). Expressed in brain, heart, lung, liver, colon, kidney and adrenal gland (PubMed:19074135). Expressed in the cortex, amygdala, cerebellum, pons, thalamus, hypothalamus, hippocampus and substantia nigra (PubMed:19074135).

描述:
Kv2.1 a potassium voltage-gated channel protein of subfamily B. Mediates the voltage-dependent potassium ion permeability of excitable membranes. Channels open or close in response to the voltage difference across the membrane, letting K ions pass in accordance with their electrochemical gradient.
序列:
MPAGMTKHGSRSTSSLPPEPMEIVRSKACSRRVRLNVGGLAHEVLWRTLDRLPRTRLGKLRDCNTHDSLLEVCDDYSLDDNEYFFDRHPGAFTSILNFYRTGRLHMMEEMCALSFSQELDYWGIDEIYLESCCQARYHQKKEQMNEELKREAETLREREGEEFDNTCCAEKRKKLWDLLEKPNSSVAAKILAIISIMFIVLSTIALSLNTLPELQSLDEFGQSTDNPQLAHVEAVCIAWFTMEYLLRFLSSPKKWKFFKGPLNAIDLLAILPYYVTIFLTESNKSVLQFQNVRRVVQIFRIMRILRILKLARHSTGLQSLGFTLRRSYNELGLLILFLAMGIMIFSSLVFFAEKDEDDTKFKSIPASFWWATITMTTVGYGDIYPKTLLGKIVGGLCCIAGVLVIALPIPIIVNNFSEFYKEQKRQEKAIKRREALERAKRNGSIVSMNMKDAFARSIEMMDIVVEKNGENMGKKDKVQDNHLSPNKWKWTKRTLSETSSSKSFETKEQGSPEKARSSSSPQHLNVQQLEDMYNKMAKTQSQPILNTKESAAQSKPKEELEMESIPSPVAPLPTRTEGVIDMRSMSSIDSFISCATDFPEATRFSHSPLTSLPSKTGGSTAPEVGWRGALGASGGRFVEANPSPDASQHSSFFIESPKSSMKTNNPLKLRALKVNFMEGDPSPLLPVLGMYHDPLRNRGSAAAAVAGLECATLLDKAVLSPESSIYTTASAKTPPRSPEKHTAIAFNFEAGVHQYIDADTDDEGQLLYSVDSSPPKSLPGSTSPKFSTGTRSEKNHFESSPLPTSPKFLRQNCIYSTEALTGKGPSGQEKCKLENHISPDVRVLPGGGAHGSTRDQSI

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Rabbit
89
Chicken
67
Xenopus
0
Zebrafish
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - Q14721 作为底物

Site PTM Type Enzyme
S15 Phosphorylation
S26 Phosphorylation
T93 Phosphorylation
Y99 Phosphorylation
Y128 Phosphorylation P12931 (SRC)
T359 Phosphorylation
T374 Phosphorylation
S457 Phosphorylation
S499 Phosphorylation
S500 Phosphorylation
S541 Phosphorylation
S607 Phosphorylation
Y691 Phosphorylation
S723 Phosphorylation
T788 Phosphorylation
S800 Phosphorylation
T804 Phosphorylation
S805 Phosphorylation Q16539 (MAPK14)
S816 Phosphorylation

研究背景

功能:

Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain. Plays also a role in the regulation of exocytosis independently of its electrical function (By similarity). Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB2; channel properties depend on the type of alpha subunits that are part of the channel (By similarity). Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1, creating a functionally diverse range of channel complexes. Heterotetrameric channel activity formed with KCNS3 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells (By similarity). Channel properties are also modulated by cytoplasmic ancillary beta subunits such as AMIGO1, KCNE1, KCNE2 and KCNE3, slowing activation and inactivation rate of the delayed rectifier potassium channels (By similarity). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Major contributor to the slowly inactivating delayed-rectifier voltage-gated potassium current in neurons of the central nervous system, sympathetic ganglion neurons, neuroendocrine cells, pancreatic beta cells, cardiomyocytes and smooth muscle cells. Mediates the major part of the somatodendritic delayed-rectifier potassium current in hippocampal and cortical pyramidal neurons and sympathetic superior cervical ganglion (CGC) neurons that acts to slow down periods of firing, especially during high frequency stimulation. Plays a role in the induction of long-term potentiation (LTP) of neuron excitability in the CA3 layer of the hippocampus (By similarity). Contributes to the regulation of glucose-induced action potential amplitude and duration in pancreatic beta cells, hence limiting calcium influx and insulin secretion. Plays a role in the regulation of resting membrane potential and contraction in hypoxia-treated pulmonary artery smooth muscle cells. May contribute to the regulation of the duration of both the action potential of cardiomyocytes and the heart ventricular repolarization QT interval. Contributes to the pronounced pro-apoptotic potassium current surge during neuronal apoptotic cell death in response to oxidative injury. May confer neuroprotection in response to hypoxia/ischemic insults by suppressing pyramidal neurons hyperexcitability in hippocampal and cortical regions (By similarity). Promotes trafficking of KCNG3, KCNH1 and KCNH2 to the cell surface membrane, presumably by forming heterotetrameric channels with these subunits. Plays a role in the calcium-dependent recruitment and release of fusion-competent vesicles from the soma of neurons, neuroendocrine and glucose-induced pancreatic beta cells by binding key components of the fusion machinery in a pore-independent manner (By similarity).

翻译修饰:

Phosphorylated. Differential C-terminal phosphorylation on a subset of serines allows graded activity-dependent regulation of channel gating in hippocampal neurons. Ser-607 and Tyr-128 are significant sites of voltage-gated regulation through phosphorylation/dephosphorylation activities. Tyr-128 can be phosphorylated by Src and dephosphorylated by cytoplasmic form of the phosphatase PTPRE. CDK5-induced Ser-607 phosphorylation increases in response to acute blockade of neuronal activity. Phosphorylated on Tyr-128 by Src and on Ser-805 by MAPK14/P38MAPK; phosphorylations are necessary and sufficient for an increase in plasma membrane insertion, apoptotic potassium current surge and completion of the neuronal cell death program. Phosphorylated on Ser-520, Ser-607, Ser-656 and Ser-805 by CDK5; phosphorylation is necessary for KCNB1 channel clustering formation. The Ser-607 phosphorylation state differs between KCNB1-containing clusters on the proximal and distal portions of the axon initial segment (AIS). Highly phosphorylated on serine residues in the C-terminal cytoplasmic tail in resting neurons. Phosphorylated in pancreatic beta cells in response to incretin hormones stimulation in a PKA- and RPS6KA5/MSK1-dependent signaling pathway, promoting beta cell survival. Phosphorylation on Ser-567 is reduced during postnatal development with low levels at P2 and P5; levels then increase to reach adult levels by P14. Phosphorylation on Ser-457, Ser-541, Ser-567, Ser-607, Ser-656 and Ser-720 as well as the N-terminal Ser-15 are sensitive to calcineurin-mediated dephosphorylation contributing to the modulation of the voltage-dependent gating properties. Dephosphorylation by phosphatase PTPRE confers neuroprotection by its inhibitory influence on the neuronal apoptotic potassium current surge in a Zn(2+)-dependent manner. Dephosphorylated at Ser-607 by protein phosphatase PPP1CA. Hypoxia-, seizure- or glutamate-induced neuronal activity promote calcium/calcineurin-dependent dephosphorylation resulting in a loss of KCNB1-containing clustering and enhanced channel activity. In response to brain ischemia, Ser-567 and Ser-607 are strongly dephosphorylated while Ser-457 and Ser-720 are less dephosphorylated. In response to brain seizures, phosphorylation levels on Ser-567 and Ser-607 are greatly reduced. Phosphorylated/dephosphorylated by Src or FYN tyrosine-protein kinases and tyrosine phosphatase PTPRE in primary Schwann cells and sciatic nerve tissue (By similarity).

Acetylated. Acetylation occurs in pancreatic beta cells in response to stimulation by incretin hormones in a histone acetyltransferase (HAT)/histone deacetylase (HDAC)-dependent signaling pathway, promoting beta cell survival.

Sumoylated on Lys-474, preferentially with SUMO1; sumoylation induces a positive shift in the voltage-dependence of activation and inhibits channel activity. Sumoylation increases the frequency of repetitive action potential firing at the cell surface of hippocampal neurons and decreases its frequency in pancreatic beta cells. Desumoylated by SENP1.

细胞定位:

Cell membrane. Perikaryon. Cell projection>Axon. Cell projection>Dendrite. Membrane>Multi-pass membrane protein. Cell junction>Synapse>Postsynaptic cell membrane. Cell junction>Synapse. Cell junction>Synapse>Synaptosome. Lateral cell membrane. Cell membrane>Sarcolemma.
Note: Localizes to high-density somatodendritic clusters and non-clustered sites on the surface of neocortical and hippocampal pyramidal neurons in a cortical actin cytoskeleton-dependent manner (PubMed:24477962). Localizes also to high-density clusters in the axon initial segment (AIS), at ankyrin-G-deficient sites, on the surface of neocortical and hippocampal pyramidal neurons (PubMed:24477962). KCNB1-containing AIS clusters localize either in close apposition to smooth endoplasmic reticulum cisternal organelles or with GABA-A receptor-containing synapses of hippocampal and cortical pyramidal neurons, respectively (PubMed:24477962). Localizes to high-density clusters on the cell surface of atrial and ventricular myocytes and at the lateral plasma membrane in epithelial cells. Localizes both to the axial and transverse tubules (T tubule) and sarcolemma in ventricular myocytes. Associated with lipid raft domains. In cortical neurons, apoptotic injuries induce de novo plasma membrane insertion in a SNARE-dependent manner causing an apoptotic potassium current surge.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Expressed in neocortical pyramidal cells. Expressed in pancreatic beta cells (at protein level). Expressed in brain, heart, lung, liver, colon, kidney and adrenal gland. Expressed in the cortex, amygdala, cerebellum, pons, thalamus, hypothalamus, hippocampus and substantia nigra.

亚基结构:

Homotetramer or heterotetramer with KCNB2. Heterotetramer with non-conducting channel-forming alpha subunits such as KCNF1, KCNG1, KCNG3, KCNG4, KCNH1, KCNH2, KCNS1, KCNS2, KCNS3 and KCNV1. Channel activity is regulated by association with ancillary beta subunits such as AMIGO1, KCNE1, KCNE2 and KCNE3 (By similarity). Self-associates (via N-terminus and C-terminus); self-association is required to regulate trafficking, gating and C-terminal phosphorylation-dependent modulation of the channel (By similarity). Interacts (via C-terminus) with STX1A (via C-terminus); this decreases the rate of channel activation and increases the rate of channel inactivation in pancreatic beta cells, induces also neuronal apoptosis in response to oxidative injury as well as pore-independent enhancement of exocytosis in neuroendocrine cells, chromaffin cells, pancreatic beta cells and from the soma of dorsal root ganglia (DRG) neurons. Interacts (via N-terminus) with SNAP25; this decreases the rate of channel inactivation in pancreatic beta cells and also increases interaction during neuronal apoptosis in a N-methyl-D-aspartate receptor (NMDAR)-dependent manner. Interacts (via N-terminus and C-terminus) with VAMP2 (via N-terminus); stimulates channel inactivation rate. Interacts with CREB1; this promotes channel acetylation in response to stimulation of incretin hormones. Interacts (via N-terminus and C-terminus) with MYL12B. Interacts (via N-terminus) with PIAS3; this increases the number of functional channels at the cell surface (By similarity). Interacts with SUMO1. Interacts (via phosphorylated form) with PTPRE; this reduces phosphorylation and channel activity in heterologous cells (By similarity).

蛋白家族:

The transmembrane segment S4 functions as voltage-sensor and is characterized by a series of positively charged amino acids at every third position. Channel opening and closing is effected by a conformation change that affects the position and orientation of the voltage-sensor paddle formed by S3 and S4 within the membrane. A transmembrane electric field that is positive inside would push the positively charged S4 segment outwards, thereby opening the pore, while a field that is negative inside would pull the S4 segment inwards and close the pore. Changes in the position and orientation of S4 are then transmitted to the activation gate formed by the inner helix bundle via the S4-S5 linker region.

The N-terminal and C-terminal cytoplasmic regions mediate homooligomerization; self-association is required to regulate trafficking, gating and C-terminal phosphorylation-dependent modulation of the channel (PubMed:11852086, PubMed:12060745, PubMed:12560340, PubMed:19074135, PubMed:24901643). The N-terminal cytoplasmic region is important for interaction with other channel-forming alpha subunits and with ancillary beta subunits (PubMed:24901643). The C-terminus is necessary and sufficient for the restricted localization to, and clustering within, both in soma and proximal portions of dendrite of neurons and in lateral membrane of non-neuronal polarized cells. The C-terminus is both necessary and sufficient as a mediator of cholinergic and calcium-stimulated modulation of channel cell membrane clustering localization and activity in hippocampal neurons (By similarity).

Belongs to the potassium channel family. B (Shab) (TC 1.A.1.2) subfamily. Kv2.1/KCNB1 sub-subfamily.

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.