产品: FOXO3A 抗体
货号: AF6020
描述: Rabbit polyclonal antibody to FOXO3A
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
分子量: 97kDa; 71kD(Calculated).
蛋白号: O43524
RRID: AB_2834954

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(100%)
克隆:
Polyclonal
特异性:
FOXO3A Antibody detects endogenous levels of total FOXO3A.
RRID:
AB_2834954
引用格式: Affinity Biosciences Cat# AF6020, RRID:AB_2834954.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

AF6q21; AF6q21 protein; DKFZp781A0677; FKHR2; FKHRL 1; FKHRL1; FKHRL1P2; Forkhead (Drosophila) homolog (rhabdomyosarcoma) like 1; Forkhead box O3; Forkhead box O3A; Forkhead box protein O3; Forkhead box protein O3A; Forkhead Drosophila homolog of in rhabdomyosarcoma like 1; Forkhead homolog (rhabdomyosarcoma) like 1; Forkhead in rhabdomyosarcoma like 1; Forkhead in rhabdomyosarcoma-like 1; FOX O3A; FOXO2; foxo3; FOXO3_HUMAN; FOXO3A; MGC12739; MGC31925;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
O43524 FOXO3_HUMAN:

Ubiquitous.

描述:
This gene belongs to the forkhead family of transcription factors which are characterized by a distinct forkhead domain. This gene likely functions as a trigger for apoptosis through expression of genes necessary for cell death.
序列:
MAEAPASPAPLSPLEVELDPEFEPQSRPRSCTWPLQRPELQASPAKPSGETAADSMIPEEEDDEDDEDGGGRAGSAMAIGGGGGSGTLGSGLLLEDSARVLAPGGQDPGSGPATAAGGLSGGTQALLQPQQPLPPPQPGAAGGSGQPRKCSSRRNAWGNLSYADLITRAIESSPDKRLTLSQIYEWMVRCVPYFKDKGDSNSSAGWKNSIRHNLSLHSRFMRVQNEGTGKSSWWIINPDGGKSGKAPRRRAVSMDNSNKYTKSRGRAAKKKAALQTAPESADDSPSQLSKWPGSPTSRSSDELDAWTDFRSRTNSNASTVSGRLSPIMASTELDEVQDDDAPLSPMLYSSSASLSPSVSKPCTVELPRLTDMAGTMNLNDGLTENLMDDLLDNITLPPSQPSPTGGLMQRSSSFPYTTKGSGLGSPTSSFNSTVFGPSSLNSLRQSPMQTIQENKPATFSSMSHYGNQTLQDLLTSDSLSHSDVMMTQSDPLMSQASTAVSAQNSRRNVMLRNDPMMSFAAQPNQGSLVNQNLLHHQHQTQGALGGSRALSNSVSNMGLSESSSLGSAKHQQQSPVSQSMQTLSDSLSGSSLYSTSANLPVMGHEKFPSDLDLDMFNGSLECDMESIIRSELMDADGLDFNFDSLISTQNVVGLNVGNFTGAKQASSQSWVPG

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Xenopus
100
Chicken
100
Rabbit
100
Zebrafish
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - O43524 作为底物

Site PTM Type Enzyme
S7 Phosphorylation Q16539 (MAPK14)
S12 Phosphorylation Q16539 (MAPK14)
S26 Phosphorylation
S30 Phosphorylation
T32 Phosphorylation Q9Y243 (AKT3) , Q9HBY8 (SGK2) , P67775 (PPP2CA) , P11309-2 (PIM1) , P31751 (AKT2) , P31749 (AKT1) , O00141 (SGK1)
S43 Phosphorylation
K46 Methylation
S75 Phosphorylation
S90 Phosphorylation
K149 Methylation
S161 Phosphorylation
Y162 Phosphorylation
S173 Phosphorylation
T179 Phosphorylation Q13131 (PRKAA1) , P54646 (PRKAA2)
Y184 Phosphorylation
K207 Ubiquitination
S209 Phosphorylation Q13043 (STK4)
S215 Phosphorylation Q13043 (STK4) , Q8IW41 (MAPKAPK5)
K230 Methylation
S231 Phosphorylation Q13043 (STK4)
S232 Phosphorylation Q13043 (STK4)
K242 Acetylation
S243 Phosphorylation Q13043 (STK4)
K245 Acetylation
S253 Phosphorylation Q9Y243 (AKT3) , O00141 (SGK1) , Q96BR1 (SGK3) , Q9HBY8 (SGK2) , P11309-2 (PIM1) , P31749 (AKT1) , P31751 (AKT2)
K259 Acetylation
K262 Methylation
K271 Acetylation
K271 Methylation
S280 Phosphorylation
S284 Phosphorylation
S286 Phosphorylation
S289 Phosphorylation
K290 Acetylation
K290 Methylation
S294 Phosphorylation P28482 (MAPK1) , Q16539 (MAPK14) , P27361 (MAPK3)
T296 Phosphorylation
S297 Phosphorylation
S299 Phosphorylation
T307 Phosphorylation
S311 Phosphorylation
S315 Phosphorylation P31749 (AKT1) , O00141 (SGK1) , P31751 (AKT2) , Q9Y243 (AKT3)
S318 Phosphorylation P48729 (CSNK1A1)
T319 Phosphorylation
S321 Phosphorylation P48729 (CSNK1A1)
S325 Phosphorylation
S330 Phosphorylation Q13627 (DYRK1A)
S344 Phosphorylation Q16539 (MAPK14) , P27361 (MAPK3) , P28482 (MAPK1)
S355 Phosphorylation
T395 Phosphorylation
S399 Phosphorylation P54646 (PRKAA2) , Q13131 (PRKAA1)
S402 Phosphorylation
S413 Phosphorylation P54646 (PRKAA2) , Q13131 (PRKAA1)
K419 Methylation
S421 Phosphorylation
S425 Phosphorylation P27361 (MAPK3) , P28482 (MAPK1) , Q16539 (MAPK14)
T427 Phosphorylation
S439 Phosphorylation
S551 Phosphorylation
S553 Phosphorylation
S555 Phosphorylation Q13131 (PRKAA1) , P54646 (PRKAA2)
K569 Acetylation
S574 Phosphorylation P45983 (MAPK8)
S588 Phosphorylation P54646 (PRKAA2) , Q13131 (PRKAA1)
S626 Phosphorylation P54646 (PRKAA2) , Q13131 (PRKAA1)
S644 Phosphorylation Q14164 (IKBKE) , O15111 (CHUK) , O14920 (IKBKB)

研究背景

功能:

Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy. Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress. Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation. In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription.

翻译修饰:

In the presence of survival factors such as IGF-1, phosphorylated on Thr-32 and Ser-253 by AKT1/PKB. This phosphorylated form then interacts with 14-3-3 proteins and is retained in the cytoplasm. Survival factor withdrawal induces dephosphorylation and promotes translocation to the nucleus where the dephosphorylated protein induces transcription of target genes and triggers apoptosis. Although AKT1/PKB doesn't appear to phosphorylate Ser-315 directly, it may activate other kinases that trigger phosphorylation at this residue. Phosphorylated by STK4/MST1 on Ser-209 upon oxidative stress, which leads to dissociation from YWHAB/14-3-3-beta and nuclear translocation. Phosphorylated by PIM1. Phosphorylation by AMPK leads to the activation of transcriptional activity without affecting subcellular localization. In response to metabolic stress, phosphorylated by AMPK on Ser-30 which mediates FOXO3 mitochondrial translocation. Phosphorylation by MAPKAPK5 promotes nuclear localization and DNA-binding, leading to induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation. Phosphorylated by CHUK/IKKA and IKBKB/IKKB. TNF-induced inactivation of FOXO3 requires its phosphorylation at Ser-644 by IKBKB/IKKB which promotes FOXO3 retention in the cytoplasm, polyubiquitination and ubiquitin-mediated proteasomal degradation. May be dephosphorylated by calcineurin A on Ser-299 which abolishes FOXO3 transcriptional activity (By similarity). In cancer cells, ERK mediated-phosphorylation of Ser-12 is required for mitochondrial translocation of FOXO3 in response to metabolic stress or chemotherapeutic agents.

Deacetylation by SIRT1 or SIRT2 stimulates interaction of FOXO3 with SKP2 and facilitates SCF(SKP2)-mediated FOXO3 ubiquitination and proteasomal degradation. Deacetylation by SIRT2 stimulates FOXO3-mediated transcriptional activity in response to oxidative stress (By similarity). Deacetylated by SIRT3. Deacetylation by SIRT3 stimulates FOXO3-mediated mtDNA transcriptional activity in response to metabolic stress.

Heavily methylated by SET9 which decreases stability, while moderately increasing transcriptional activity. The main methylation site is Lys-271. Methylation doesn't affect subcellular location.

Polyubiquitinated. Ubiquitinated by a SCF complex containing SKP2, leading to proteasomal degradation.

The N-terminus is cleaved following import into the mitochondrion.

细胞定位:

Cytoplasm>Cytosol. Nucleus. Mitochondrion matrix. Mitochondrion outer membrane>Peripheral membrane protein>Cytoplasmic side.
Note: Retention in the cytoplasm contributes to its inactivation (PubMed:10102273, PubMed:15084260, PubMed:16751106). Translocates to the nucleus upon oxidative stress and in the absence of survival factors (PubMed:10102273, PubMed:16751106). Translocates from the cytosol to the nucleus following dephosphorylation in response to autophagy-inducing stimuli (By similarity). Translocates in a AMPK-dependent manner into the mitochondrion in response to metabolic stress (PubMed:23283301, PubMed:29445193).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Ubiquitous.

亚基结构:

Upon metabolic stress, forms a complex composed of FOXO3, SIRT3 and mitochondrial RNA polymerase POLRMT; the complex is recruited to mtDNA in a SIRT3-dependent manner. Also forms a complex composed of FOXO3, SIRT3, TFAM and POLRMT. Interacts with SIRT2; the interaction occurs independently of SIRT2 deacetylase activity (By similarity). Interacts with YWHAB/14-3-3-beta and YWHAZ/14-3-3-zeta, which are required for cytosolic sequestration. Upon oxidative stress, interacts with STK4/MST1, which disrupts interaction with YWHAB/14-3-3-beta and leads to nuclear translocation. Interacts with PIM1. Interacts with DDIT3/CHOP. Interacts (deacetylated form) with SKP2. Interacts with CHUK and IKBKB. Interacts with CAMK2A, CAMK2B and calcineurin A (By similarity). Interacts FOXO3; this interaction represses FOXO3 transactivation.

研究领域

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Environmental Information Processing > Signal transduction > FoxO signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > AMPK signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > EGFR tyrosine kinase inhibitor resistance.

· Human Diseases > Cancers: Specific types > Endometrial cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Non-small cell lung cancer.   (View pathway)

· Organismal Systems > Immune system > Chemokine signaling pathway.   (View pathway)

· Organismal Systems > Aging > Longevity regulating pathway.   (View pathway)

· Organismal Systems > Aging > Longevity regulating pathway - multiple species.   (View pathway)

· Organismal Systems > Nervous system > Neurotrophin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Prolactin signaling pathway.   (View pathway)

文献引用

1). Exercise-induced Musclin determines the fate of fibro-adipogenic progenitors to control muscle homeostasis. Cell stem cell, 2024 (PubMed: 38232727) [IF=23.9]

2). TMF inhibits extracellular matrix degradation by regulating the C/EBPβ/ADAMTS5 signaling pathway in osteoarthritis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2024 (PubMed: 38554527) [IF=7.5]

Application: IHC    Species: Human    Sample: C28/I2 cells

Fig. 4. Knockdown of FOXO3a compromised the inhibitory effects of TMF on C/EBPβ-mediated ECM degradation. (A–B) IHC assays were used to detect the altered expression of FOXO3a. (C–D) The protein expression of FOXO3a in shRNA-FOXO3a-infected C28/I2 cells was detected by western blotting assays. (E–K) Western blotting assays were used to detect the protein expression of Aggrecan, ADAMTS5, C/EBPβ, p-C/EBPβ, caspase3, cleaved-caspase3, and FOXO3a in LV-sh-FOXO3a-infected C28/I2 cells treated with IL-1β. (L-M) The apoptosis rate was determined by a flow cytometer.

3). Bexarotene improves motor function after spinal cord injury in mice. Neural Regeneration Research, 2023 (PubMed: 37449638) [IF=6.1]

Application: WB    Species: Mouse    Sample: spinal cord

Figure 10 Bexarotene activates TFE3 through the AMPK-mTOR and AMPK-SPK2- CARM1 signaling pathways in SCI. (A) Western blot assay of the cytoplasmic expression levels of AMPK, p-AMPK, mTOR, and p-mTOR. (B) Quantification of AMPK, p-AMPK, mTOR, and p-mTOR from A, normalized to GADPH. (C) Western blot assay of the nuclear expression levels of AMPK, p-AMPK, FOXO3a, p-FOXO3a, SKP2, and CARM1. (D) Quantification of AMPK, p-AMPK, FOXO3a, p-FOXO3a, SKP2, and CARM1 from C, normalized to H3. (E, F) Immunoprecipitation images showing nuclear CARM1–TFE3 binding. Data are expressed as the mean ± SEM (n = 6 per group). **P < 0.01, vs. SCI group; ##P < 0.01, vs. SCI + Bex group. One-way analysis of variance with least significance difference post hoc test. (p-)AMPK: (phospho-) adenosine 5′-monophosphate-activated protein kinase; (p-)FOXO3a: (phospho-)forkhead box O3; (p-)mTOR: (phospho-)mammalian target of rapamycin; Bex: bexarotene; CARM1: coactivator-associated arginine methyltransferase 1; CC: compound C; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H3: histone protein H3; SCI: spinal cord injury; SKP2: S-phase kinase-associated protein 2; TFE3: transcription factor E3.

4). 贝沙罗汀改善脊髓损伤后运动功能的机制. 中国神经再生研究(英文版), 2023 (PubMed: 37449638) [IF=6.1]

Application: WB    Species: Mouse    Sample:

Figure 10 Bexarotene activates TFE3 through the AMPK-mTOR and AMPK-SPK2- CARM1 signaling pathways in SCI. (A) Western blot assay of the cytoplasmic expression levels of AMPK, p-AMPK, mTOR, and p-mTOR. (B) Quantification of AMPK, p-AMPK, mTOR, and p-mTOR from A, normalized to GADPH. (C) Western blot assay of the nuclear expression levels of AMPK, p-AMPK, FOXO3a, p-FOXO3a, SKP2, and CARM1. (D) Quantification of AMPK, p-AMPK, FOXO3a, p-FOXO3a, SKP2, and CARM1 from C, normalized to H3. (E, F) Immunoprecipitation images showing nuclear CARM1–TFE3 binding. Data are expressed as the mean ± SEM (n = 6 per group). **P < 0.01, vs. SCI group; ##P < 0.01, vs. SCI + Bex group. One-way analysis of variance with least significance difference post hoc test. (p-)AMPK: (phospho-) adenosine 5′-monophosphate-activated protein kinase; (p-)FOXO3a: (phospho-)forkhead box O3; (p-)mTOR: (phospho-)mammalian target of rapamycin; Bex: bexarotene; CARM1: coactivator-associated arginine methyltransferase 1; CC: compound C; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; H3: histone protein H3; SCI: spinal cord injury; SKP2: S-phase kinase-associated protein 2; TFE3: transcription factor E3.

5). Formononetin ameliorates muscle atrophy by regulating myostatin‐mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021 (PubMed: 33405354) [IF=5.3]

Application: WB    Species: Mouse    Sample: C2C12 myoblasts

FIGURE 5 FMN inhibits myostatin-mediated dephosphorylation on the PI3K/Akt/FoxO3a signalling pathway in the muscle of CKD rats and C2C12 myotubes. (A) Protein levels of p-PI3K, PI3K, p-Akt, Akt, p-FoxO3a and FoxO3a in gastrocnemius muscle analysed using Western blotting (n = 3/group). (B) Protein levels of MAFbx and MuRF-1 in gastrocnemius muscles analysed using Western blotting (n = 3/ group). (C) C2C12 myotubes were treated with FMN (50 μmol/L) in the presence or absence of TNF-α (40 ng/mL) for 48 h following 24 h of incubation with si-myostatin or si-NC. The myotubes were divided into four groups: si-NC, si-NC + TNF-α, si-NC + TNF-α + FMN (50 μmol/L) and si-myostatin + TNF-α. Protein levels of p-PI3K, PI3K, p-Akt, Akt, p-FoxO3a and FoxO3a in C2C12 myotubes (n = 3/ group). (D) Protein levels of MAFbx and MuRF-1 in C2C12 myotubes (n = 3/group). (E) Myostatin OE transfection was used to overexpress myostatin in C2C12 myotubes, and they were incubated with FMN (50 μmol/L) and TNF-α for another 48 h. The myotubes were divided into four groups: vector NC, vector NC + TNF-α, vector NC + TNF-α + FMN (50 μmol/L) and myostatin OE + TNF-α + FMN (50 μmol/L). The protein levels of p-PI3K, PI3K, p-Akt, Akt, p-FoxO3a and FoxO3a in the myotubes were analysed using Western blotting. (F) Protein levels of MAFbx and MuRF1 in C2C12 myotubes analysed by Western blotting (n = 3/group). *P < .05, **P < .01

6). Cathepsin S deficiency improves muscle mass loss and dysfunction via the modulation of protein metabolism in mice under pathological stress conditions. The FASEB Journal, 2023 (PubMed: 37428652) [IF=4.8]

Application: WB    Species: Mouse    Sample:

FIGURE 5 CTSS deficiency ameliorated stress-related metabolic molecular alterations. (A) Representative immunoblotting images and quantitative data for p-PI3K, p-Akt, p-FoxO3ɑ, MAFbx, MuRF-1, PI3K, Akt, FoxO3ɑ and GAPDH in gastrocnemius muscles at Day 14 after stress (n = 4). Data are mean ± SEM, and p-values were determined by a one-way ANOVA followed by Bonferroni post hoc tests. CW: CTSS+/+ control mice; CK: CTSS−/− control mice; SW: 14-day-stressed CTSS+/+ mice; SK: 14-day-stressed CTSS−/− mice. *p 

7). TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Experimental and therapeutic medicine, 2024 (PubMed: 38800044) [IF=2.7]

Application: IHC    Species: Rat    Sample:

Figure 4 FOXO3a knockdown decreases the inhibitory activity of TMF against BMPER/BMP4 signaling-mediated chondrocyte hypertrophy. (A and B) Immunohistochemical analysis of FOXO3a in the cartilage of rat OA models. The arrows indicate positive staining. (C and D) The FOXO3a protein expression was detected by western blot in shRNA-FOXO3a-infected C28/I2 cells. Protein expression levels of (E and F) collagen X, (E and G) Runx2, (E and H) FOXO3a, (E and I) BMPER, (E and J) BMP4 and (E and K) p-Smad1/Smad1. Immunofluorescent intensity of (L) collagen X and (M) Runx2. *P

Application: WB    Species: Rat    Sample:

Figure 4 FOXO3a knockdown decreases the inhibitory activity of TMF against BMPER/BMP4 signaling-mediated chondrocyte hypertrophy. (A and B) Immunohistochemical analysis of FOXO3a in the cartilage of rat OA models. The arrows indicate positive staining. (C and D) The FOXO3a protein expression was detected by western blot in shRNA-FOXO3a-infected C28/I2 cells. Protein expression levels of (E and F) collagen X, (E and G) Runx2, (E and H) FOXO3a, (E and I) BMPER, (E and J) BMP4 and (E and K) p-Smad1/Smad1. Immunofluorescent intensity of (L) collagen X and (M) Runx2. *P

8). Mechanism of N-Methyl-N-Nitroso-Urea-Induced Gastric Precancerous Lesions in Mice. Journal of Oncology, 2022 (PubMed: 35342404)

Application: WB    Species: Mice    Sample: Gastric Mucosa

Figure 6 Changes in expression levels of key proteins in the FoxO3a signaling pathway in gastric mucosa. (a) Immunoblot showing protein expression levels of P-FoxO3a, FoxO3a, P-AMPK, AMPK, PCK1, LKB1, and LDHA. (b) The ratio of P-FoxO3a/FoxO3a is lower, and P-AMPK/AMPK and P-AKT/AKT are higher in GPL. (c) The PCK1 and LKB1 decreased, and LDHA overexpressed in GPL, ∗P < 0.05.

9). Mechanism of Hypoxia-Activated MiR-194 /FoxO3a Inducing Glycolytic Metabolism Reprogramming in Gastric Precancerous Lesions. Research Square, 2021

Application: WB    Species: Mouse    Sample: gastric mucosa

Figure 6. Changes in expression levels of key proteins in the FoxO3a signaling pathway in Figure 6. Changes in expression levels of key proteins in the FoxO3a signaling pathway in gastric mucosa. A, immunoblot showing protein expression levels of P-FoxO3a, FoxO3a, P-AMPK, AMPK, PCK1, LKB1, and LDHA. B, The ratio of P-FoxO3a/FoxO3a is lower, P-AMPK/AMPK and P-AKT/AKT are higher in GPL.C, The PCK1, LKB1 decreased, and LDHA overexpressed in GPL,. A, immunoblot showing protein expression levels of P-FoxO3a, FoxO3a, P-AMPK, AMPK, PCK1, LKB1, and LDHA. B, The ratio of P-FoxO3a/FoxO3a is lower, P-AMPK/AMPK and P-AKT/AKT are higher in GPL.C, The PCK1, LKB1 decreased, and LDHA overexpressed in GPL,

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.