产品: | 磷酸化 IRF3 (Ser385) 抗体 |
货号: | AF3910 |
描述: | Rabbit polyclonal antibody to Phospho-IRF3 (Ser385) |
应用: | IF/ICC |
反应: | Human, Mouse, Rat |
分子量: | 57kDa; 47kD(Calculated). |
蛋白号: | Q14653 |
RRID: | AB_2846808 |
产品描述
*The optimal dilutions should be determined by the end user.
*Tips:
WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.
引用格式: Affinity Biosciences Cat# AF3910, RRID:AB_2846808.
展开/折叠
IIAE7; Interferon regulatory factor 3; IRF 3; IRF-3; IRF3; IRF3_HUMAN; MGC94729;
抗原和靶标
A synthesized peptide derived from human IRF-3 around the phosphorylation site of Ser385.
- Q14653 IRF3_HUMAN:
- Protein BLAST With
- NCBI/
- ExPASy/
- Uniprot
MGTPKPRILPWLVSQLDLGQLEGVAWVNKSRTRFRIPWKHGLRQDAQQEDFGIFQAWAEATGAYVPGRDKPDLPTWKRNFRSALNRKEGLRLAEDRSKDPHDPHKIYEFVNSGVGDFSQPDTSPDTNGGGSTSDTQEDILDELLGNMVLAPLPDPGPPSLAVAPEPCPQPLRSPSLDNPTPFPNLGPSENPLKRLLVPGEEWEFEVTAFYRGRQVFQQTISCPEGLRLVGSEVGDRTLPGWPVTLPDPGMSLTDRGVMSYVRHVLSCLGGGLALWRAGQWLWAQRLGHCHTYWAVSEELLPNSGHGPDGEVPKDKEGGVFDLGPFIVDLITFTEGSGRSPRYALWFCVGESWPQDQPWTKRLVMVKVVPTCLRALVEMARVGGASSLENTVDLHISNSHPLSLTSDQYKAYLQDLVEGMDFQGPGES
翻译修饰 - Q14653 作为底物
Site | PTM Type | Enzyme | Source |
---|---|---|---|
T3 | Phosphorylation | Uniprot | |
S14 | Phosphorylation | Uniprot | |
K29 | Ubiquitination | Uniprot | |
K70 | Sumoylation | Uniprot | |
K70 | Ubiquitination | Uniprot | |
T75 | Phosphorylation | Uniprot | |
K77 | Ubiquitination | Uniprot | |
K87 | Sumoylation | Uniprot | |
K87 | Ubiquitination | Uniprot | |
S97 | Phosphorylation | Uniprot | |
S123 | Phosphorylation | Uniprot | |
T135 | Phosphorylation | P78527 (PRKDC) | Uniprot |
S173 | Phosphorylation | P45984 (MAPK9) , P45983 (MAPK8) , Q9UHD2 (TBK1) | Uniprot |
S175 | Phosphorylation | Q9UHD2 (TBK1) | Uniprot |
T180 | Phosphorylation | Uniprot | |
S188 | Phosphorylation | Uniprot | |
K193 | Ubiquitination | Uniprot | |
T237 | Phosphorylation | Uniprot | |
T244 | Phosphorylation | Uniprot | |
T253 | Phosphorylation | Uniprot | |
S259 | Phosphorylation | Uniprot | |
K313 | Ubiquitination | Uniprot | |
K315 | Ubiquitination | Uniprot | |
S339 | Phosphorylation | Uniprot | |
T370 | Phosphorylation | Uniprot | |
S385 | Phosphorylation | Q9UHD2 (TBK1) | Uniprot |
S386 | Phosphorylation | Q14164 (IKBKE) , Q9UQM7 (CAMK2A) , Q9UHD2 (TBK1) | Uniprot |
T390 | Phosphorylation | Uniprot | |
S396 | Phosphorylation | O14920 (IKBKB) , Q14164 (IKBKE) , Q9UHD2 (TBK1) | Uniprot |
S398 | Phosphorylation | O14920 (IKBKB) , Q14164 (IKBKE) , Q9UHD2 (TBK1) | Uniprot |
S402 | Phosphorylation | O14920 (IKBKB) , Q14164 (IKBKE) , Q9UHD2 (TBK1) | Uniprot |
T404 | Phosphorylation | O14920 (IKBKB) , Q9UHD2 (TBK1) | Uniprot |
S405 | Phosphorylation | O14920 (IKBKB) , Q9UHD2 (TBK1) | Uniprot |
S427 | Phosphorylation | Uniprot |
研究背景
Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction. Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes. Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages.
Constitutively phosphorylated on many Ser/Thr residues. Activated following phosphorylation by TBK1 and IKBKE. Innate adapter protein MAVS, STING1 or TICAM1 are first activated by viral RNA, cytosolic DNA, and bacterial lipopolysaccharide (LPS), respectively, leading to activation of the kinases TBK1 and IKBKE. These kinases then phosphorylate the adapter proteins on the pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1. Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce IFNs.
(Microbial infection) Phosphorylation and subsequent activation of IRF3 is inhibited by vaccinia virus protein E3.
Ubiquitinated; ubiquitination involves RBCK1 leading to proteasomal degradation. Polyubiquitinated; ubiquitination involves TRIM21 leading to proteasomal degradation.
ISGylated by HERC5 resulting in sustained IRF3 activation and in the inhibition of IRF3 ubiquitination by disrupting PIN1 binding. The phosphorylation state of IRF3 does not alter ISGylation.
Cytoplasm. Nucleus.
Note: Shuttles between cytoplasmic and nuclear compartments, with export being the prevailing effect (PubMed:10805757). When activated, IRF3 interaction with CREBBP prevents its export to the cytoplasm (PubMed:10805757).
Expressed constitutively in a variety of tissues.
Monomer. Homodimer; phosphorylation-induced. Interacts (when phosphorylated) with CREBBP. Interacts with MAVS (via phosphorylated pLxIS motif). Interacts with TICAM1 (via phosphorylated pLxIS motif). Interacts with STING1 (via phosphorylated pLxIS motif). Interacts with IKBKE and TBK1. Interacts with TICAM2. Interacts with RBCK1. Interacts with HERC5. Interacts with DDX3X (phosphorylated at 'Ser-102'); the interaction allows the phosphorylation and activation of IRF3 by IKBKE. Interacts with TRIM21 and ULK1, in the presence of TRIM21; this interaction leads to IRF3 degradation by autophagy. Interacts with RIOK3; RIOK3 probably mediates the interaction of TBK1 with IRF3. Interacts with ILRUN; the interaction inhibits IRF3 binding to its DNA consensus sequence. Interacts with LYAR; this interaction impairs IRF3 DNA-binding activity.
(Microbial infection) Interacts with rotavirus A NSP1 (via pLxIS motif); this interaction leads to the proteasome-dependent degradation of IRF3.
(Microbial infection) Interacts with herpes virus 8/HHV-8 protein VIRF1.
(Microbial infection) Interacts with Seneca Valley virus protease 3C; this interaction is involved in the suppression of IRF3 expression and phosphorylation by the virus.
Belongs to the IRF family.
研究领域
· Human Diseases > Infectious diseases: Bacterial > Pertussis.
· Human Diseases > Infectious diseases: Viral > Hepatitis C.
· Human Diseases > Infectious diseases: Viral > Hepatitis B.
· Human Diseases > Infectious diseases: Viral > Measles.
· Human Diseases > Infectious diseases: Viral > Influenza A.
· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.
· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.
· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.
· Human Diseases > Cancers: Overview > Viral carcinogenesis.
· Organismal Systems > Immune system > Toll-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > NOD-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > RIG-I-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > Cytosolic DNA-sensing pathway. (View pathway)
限制条款
产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。
产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。
Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。产品仅供科学研究使用。不用于诊断和治疗。
产品未经授权不得转售。
Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.