产品: beta Catenin 抗体
货号: AF6266
描述: Rabbit polyclonal antibody to beta Catenin
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Zebrafish, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
分子量: 92kDa; 85kD(Calculated).
蛋白号: P35222
RRID: AB_2835124

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:200
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Zebrafish(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(100%)
克隆:
Polyclonal
特异性:
beta Catenin Antibody detects endogenous levels of total beta Catenin.
RRID:
AB_2835124
引用格式: Affinity Biosciences Cat# AF6266, RRID:AB_2835124.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
1mg/ml in PBS, pH 7.4. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Beta catenin; Beta-catenin; Cadherin associated protein; Catenin (cadherin associated protein), beta 1, 88kDa; Catenin beta 1; Catenin beta-1; CATNB; CHBCAT; CTNB1_HUMAN; CTNNB; CTNNB1; DKFZp686D02253; FLJ25606; FLJ37923; OTTHUMP00000162082; OTTHUMP00000165222; OTTHUMP00000165223; OTTHUMP00000209288; OTTHUMP00000209289;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
P35222 CTNB1_HUMAN:

Expressed in several hair follicle cell types: basal and peripheral matrix cells, and cells of the outer and inner root sheaths. Expressed in colon. Present in cortical neurons (at protein level). Expressed in breast cancer tissues (at protein level) (PubMed:29367600).

描述:
Beta-catenin is an adherens junction protein. Adherens junctions (AJs; also called the zonula adherens) are critical for the establishment and maintenance of epithelial layers, such as those lining organ surfaces. AJs mediate adhesion between cells, communicate a signal that neighboring cells are present, and anchor the actin cytoskeleton. In serving these roles, AJs regulate normal cell growth and behavior.
序列:
MATQADLMELDMAMEPDRKAAVSHWQQQSYLDSGIHSGATTTAPSLSGKGNPEEEDVDTSQVLYEWEQGFSQSFTQEQVADIDGQYAMTRAQRVRAAMFPETLDEGMQIPSTQFDAAHPTNVQRLAEPSQMLKHAVVNLINYQDDAELATRAIPELTKLLNDEDQVVVNKAAVMVHQLSKKEASRHAIMRSPQMVSAIVRTMQNTNDVETARCTAGTLHNLSHHREGLLAIFKSGGIPALVKMLGSPVDSVLFYAITTLHNLLLHQEGAKMAVRLAGGLQKMVALLNKTNVKFLAITTDCLQILAYGNQESKLIILASGGPQALVNIMRTYTYEKLLWTTSRVLKVLSVCSSNKPAIVEAGGMQALGLHLTDPSQRLVQNCLWTLRNLSDAATKQEGMEGLLGTLVQLLGSDDINVVTCAAGILSNLTCNNYKNKMMVCQVGGIEALVRTVLRAGDREDITEPAICALRHLTSRHQEAEMAQNAVRLHYGLPVVVKLLHPPSHWPLIKATVGLIRNLALCPANHAPLREQGAIPRLVQLLVRAHQDTQRRTSMGGTQQQFVEGVRMEEIVEGCTGALHILARDVHNRIVIRGLNTIPLFVQLLYSPIENIQRVAAGVLCELAQDKEAAEAIEAEGATAPLTELLHSRNEGVATYAAAVLFRMSEDKPQDYKKRLSVELTSSLFRTEPMAWNETADLGLDIGAQGEPLGYRQDDPSYRSFHSGGYGQDALGMDPMMEHEMGGHHPGADYPVDGLPDLGHAQDLMDGLPPGDSNQLAWFDTDL

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Xenopus
100
Zebrafish
100
Chicken
100
Rabbit
100
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - P35222 作为底物

Site PTM Type Enzyme
A2 Acetylation
K19 Acetylation
K19 Ubiquitination
S23 O-Glycosylation
S23 Phosphorylation
S29 Phosphorylation P68400 (CSNK2A1) , P67870 (CSNK2B) , P19784 (CSNK2A2)
Y30 Phosphorylation
S33 Phosphorylation O15111 (CHUK) , P49841 (GSK3B) , P45983 (MAPK8) , Q9H2X6 (HIPK2) , P49840 (GSK3A)
S37 Phosphorylation P49840 (GSK3A) , P45983 (MAPK8) , P49841 (GSK3B) , O15111 (CHUK) , Q9H2X6 (HIPK2)
T41 Phosphorylation P49840 (GSK3A) , P45983 (MAPK8) , O15111 (CHUK) , P49841 (GSK3B)
S45 Phosphorylation O15111 (CHUK) , P48730 (CSNK1D) , P17612 (PRKACA) , P48729 (CSNK1A1) , P49674 (CSNK1E) , Q8N752 (CSNK1A1L) , Q00534 (CDK6) , Q05513 (PRKCZ)
S47 Phosphorylation
K49 Acetylation
K49 Methylation
K49 Ubiquitination
Y64 Phosphorylation Q13882 (PTK6)
S73 Phosphorylation
Y86 Phosphorylation P00519 (ABL1) , P12931 (SRC)
T102 Phosphorylation P68400 (CSNK2A1) , P19784 (CSNK2A2) , P67870 (CSNK2B)
T112 Phosphorylation Q15139 (PRKD1) , P67870 (CSNK2B) , P19784 (CSNK2A2) , P68400 (CSNK2A1)
T120 Phosphorylation Q15139 (PRKD1)
K133 Ubiquitination
Y142 Phosphorylation P04629 (NTRK1) , Q13882 (PTK6) , P21802 (FGFR2) , P22607 (FGFR3) , P06241 (FYN) , P16591 (FER) , P00533 (EGFR)
K158 Ubiquitination
K170 Ubiquitination
S179 Phosphorylation
K180 Ubiquitination
S191 Phosphorylation P45984 (MAPK9) , Q00535 (CDK5)
S196 Phosphorylation
S222 Phosphorylation
K233 Ubiquitination
S246 Phosphorylation Q00535 (CDK5)
K288 Ubiquitination
Y331 Phosphorylation Q13882 (PTK6)
T332 Phosphorylation Q9UQM7 (CAMK2A) , Q13554 (CAMK2B)
Y333 Phosphorylation P12931 (SRC) , Q13882 (PTK6)
K335 Ubiquitination
K345 Acetylation
K345 Ubiquitination
K354 Acetylation
K354 Ubiquitination
T393 Phosphorylation P68400 (CSNK2A1)
K394 Ubiquitination
K435 Acetylation
K435 Ubiquitination
T461 Phosphorylation
T472 Phosphorylation Q13554 (CAMK2B) , Q9UQM7 (CAMK2A)
S473 Phosphorylation
Y489 Phosphorylation P00519 (ABL1)
K496 Ubiquitination
K508 Ubiquitination
T510 Phosphorylation
C520 S-Nitrosylation
T547 Phosphorylation
T551 Phosphorylation
S552 Phosphorylation Q9UQM7 (CAMK2A) , P17612 (PRKACA) , P54646 (PRKAA2) , P31751 (AKT2) , Q13554 (CAMK2B) , P31749 (AKT1)
T556 Phosphorylation
T574 Phosphorylation
S605 Phosphorylation P53778 (MAPK12) , P45984 (MAPK9)
K625 Ubiquitination
S646 Phosphorylation
T653 Phosphorylation
Y654 Phosphorylation P07949 (RET) , P04626 (ERBB2) , P00533 (EGFR) , P00519 (ABL1) , P36888 (FLT3) , P12931 (SRC)
S663 Phosphorylation
Y670 Phosphorylation
K671 Ubiquitination
S675 Phosphorylation O96013 (PAK4) , Q13153 (PAK1) , P17612 (PRKACA)
T679 Phosphorylation
S680 Phosphorylation
S715 Phosphorylation Q05655 (PRKCD)
Y716 Phosphorylation
S718 Phosphorylation P53350 (PLK1)
S721 Phosphorylation
Y724 Phosphorylation
Y748 Phosphorylation

研究背景

功能:

Key downstream component of the canonical Wnt signaling pathway. In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome. In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes. Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex. Acts as a negative regulator of centrosome cohesion. Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization. Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2. Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML. Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity).

翻译修饰:

Phosphorylation at Ser-552 by AMPK promotes stabilizion of the protein, enhancing TCF/LEF-mediated transcription (By similarity). Phosphorylation by GSK3B requires prior phosphorylation of Ser-45 by another kinase. Phosphorylation proceeds then from Thr-41 to Ser-37 and Ser-33. Phosphorylated by NEK2. EGF stimulates tyrosine phosphorylation. Phosphorylation on Tyr-654 decreases CDH1 binding and enhances TBP binding. Phosphorylated on Ser-33 and Ser-37 by HIPK2 and GSK3B, this phosphorylation triggers proteasomal degradation. Phosphorylation on Ser-191 and Ser-246 by CDK5. Phosphorylation by CDK2 regulates insulin internalization. Phosphorylation by PTK6 at Tyr-64, Tyr-142, Tyr-331 and/or Tyr-333 with the predominant site at Tyr-64 is not essential for inhibition of transcriptional activity.

Ubiquitinated by the SCF(BTRC) E3 ligase complex when phosphorylated by GSK3B, leading to its degradation. Ubiquitinated by a E3 ubiquitin ligase complex containing UBE2D1, SIAH1, CACYBP/SIP, SKP1, APC and TBL1X, leading to its subsequent proteasomal degradation (By similarity).

S-nitrosylation at Cys-619 within adherens junctions promotes VEGF-induced, NO-dependent endothelial cell permeability by disrupting interaction with E-cadherin, thus mediating disassembly adherens junctions.

O-glycosylation at Ser-23 decreases nuclear localization and transcriptional activity, and increases localization to the plasma membrane and interaction with E-cadherin CDH1.

Deacetylated at Lys-49 by SIRT1.

细胞定位:

Cytoplasm. Nucleus. Cytoplasm>Cytoskeleton. Cell junction>Adherens junction. Cell junction. Cell membrane. Cytoplasm>Cytoskeleton>Microtubule organizing center>Centrosome. Cytoplasm>Cytoskeleton>Spindle pole. Cell junction>Synapse. Cytoplasm>Cytoskeleton>Cilium basal body.
Note: Colocalized with RAPGEF2 and TJP1 at cell-cell contacts (By similarity). Cytoplasmic when it is unstabilized (high level of phosphorylation) or bound to CDH1. Translocates to the nucleus when it is stabilized (low level of phosphorylation). Interaction with GLIS2 and MUC1 promotes nuclear translocation. Interaction with EMD inhibits nuclear localization. The majority of beta-catenin is localized to the cell membrane. In interphase, colocalizes with CROCC between CEP250 puncta at the proximal end of centrioles, and this localization is dependent on CROCC and CEP250. In mitosis, when NEK2 activity increases, it localizes to centrosomes at spindle poles independent of CROCC. Colocalizes with CDK5 in the cell-cell contacts and plasma membrane of undifferentiated and differentiated neuroblastoma cells. Interaction with FAM53B promotes translocation to the nucleus (PubMed:25183871).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Expressed in several hair follicle cell types: basal and peripheral matrix cells, and cells of the outer and inner root sheaths. Expressed in colon. Present in cortical neurons (at protein level). Expressed in breast cancer tissues (at protein level).

亚基结构:

Two separate complex-associated pools are found in the cytoplasm. The majority is present as component of an E-cadherin:catenin adhesion complex composed of at least E-cadherin/CDH1 and beta-catenin/CTNNB1, and possibly alpha-catenin/CTNNA1; the complex is located to adherens junctions. The stable association of CTNNA1 is controversial as CTNNA1 was shown not to bind to F-actin when assembled in the complex. Alternatively, the CTNNA1-containing complex may be linked to F-actin by other proteins such as LIMA1. Another cytoplasmic pool is part of a large complex containing AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome. Wnt-dependent activation of DVL antagonizes the action of GSK3B. When GSK3B activity is inhibited the complex dissociates, CTNNB1 is dephosphorylated and is no longer targeted for destruction. The stabilized protein translocates to the nucleus, where it binds TCF/LEF-1 family members, TBP, BCL9, BCL9L and possibly also RUVBL1 and CHD8. Binds CTNNBIP and EP300. CTNNB1 forms a ternary complex with LEF1 and EP300 that is disrupted by CTNNBIP1 binding. Interacts with TAX1BP3 (via the PDZ domain); this interaction inhibits the transcriptional activity of CTNNB1. Interacts with AJAP1, BAIAP1, CARM1, CTNNA3, CXADR and PCDH11Y. Binds SLC9A3R1. Interacts with GLIS2 and MUC1. Interacts with SLC30A9. Interacts with XIRP1. Interacts directly with AXIN1; the interaction is regulated by CDK2 phosphorylation of AXIN1. Interacts with SCRIB. Interacts with RAPGEF2. Interacts with PTPRU (via the cytoplasmic juxtamembrane domain). Interacts with EMD. Interacts with TNIK and TCF7L2. Interacts with SESTD1 and TRPC4. Interacts with CAV1. Interacts with TRPV4. The TRPV4 and CTNNB1 complex can interact with CDH1. Interacts with VCL. Interacts with PTPRJ. Interacts with PKT7 and CDK2. Interacts with FAT1 (via the cytoplasmic domain). Interacts with NANOS1 and NDRG2. Interacts with isoform 1 of NEK2. Interacts with both isoform 1 and isoform 2 of CDK5. Interacts with PTK6. Interacts with SOX7; this interaction may lead to proteasomal degradation of active CTNNB1 and thus inhibition of Wnt/beta-catenin-stimulated transcription. Identified in a complex with HINT1 and MITF. Interacts with FHIT. The CTNNB1 and TCF7L2/TCF4 complex interacts with PML (isoform PML-4). Interacts with FERMT2. Identified in a complex with TCF7L2/TCF4 and FERMT2. Interacts with RORA. May interact with P-cadherin/CDH3. Interacts with RNF220. Interacts with CTNND2. Interacts (via the C-terminal region) with CBY1. The complex composed, at least, of APC, CTNNB1 and GSK3B interacts with JPT1; the interaction requires the inactive form of GSK3B (phosphorylated at 'Ser-9'). Interacts with DLG5 (By similarity). Interacts with FAM53B; promoting translocation to the nucleus. Interacts with TMEM170B. Interacts with AHI1. Interacts with GID8. Component of an cadherin:catenin adhesion complex composed of at least of CDH26, beta-catenin/CTNNB1, alpha-catenin/CTNNA1 and p120 catenin/CTNND1. Forms a complex comprising APPL1, RUVBL2, APPL2, HDAC1 and HDAC2. Interacts with IRF2BPL; mediates the ubiquitination and degradation of CTNNB1. Interacts with AMFR (By similarity). Interacts with LMBR1L. Interacts with SOX30; prevents interaction of CTNNB1 with TCF7L2/TCF4 and leads to inhibition of Wnt signaling.

(Microbial infection) Interacts with herpes virus 8 protein vPK; this interaction inhibits the Wnt signaling pathway.

蛋白家族:

Belongs to the beta-catenin family.

研究领域

· Cellular Processes > Cellular community - eukaryotes > Focal adhesion.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Adherens junction.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells.   (View pathway)

· Environmental Information Processing > Signal transduction > Rap1 signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Wnt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Hippo signaling pathway.   (View pathway)

· Human Diseases > Infectious diseases: Bacterial > Bacterial invasion of epithelial cells.

· Human Diseases > Infectious diseases: Bacterial > Pathogenic Escherichia coli infection.

· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Endometrial cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Prostate cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Thyroid cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Basal cell carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Breast cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Gastric cancer.   (View pathway)

· Human Diseases > Cardiovascular diseases > Arrhythmogenic right ventricular cardiomyopathy (ARVC).

· Organismal Systems > Immune system > Leukocyte transendothelial migration.   (View pathway)

· Organismal Systems > Endocrine system > Melanogenesis.

· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.   (View pathway)

文献引用

1). Exercise-induced Musclin determines the fate of fibro-adipogenic progenitors to control muscle homeostasis. Cell stem cell, 2024 (PubMed: 38232727) [IF=23.9]

2). MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and α1,3-fucosylation. CELL DEATH AND DIFFERENTIATION, 2017 (PubMed: 28914881) [IF=12.4]

Application: WB    Species: human    Sample:

Figure 4 miR-200c decreases α1,3-fucosylation on CD44 and inactivates Wnt/β-catenin signaling pathway. (a, e) Western/lectin blot analysis of effect of miR-200c on α1,3- fucosylation and LeY biosynthesis in RL95-2 (a) and Ishikawa (e) cells. CBB: coomassie brilliant blue. LTL: Lotus tetragonolobus lectin. (b, f) Immunoprecipitation and western blot analysis of α 1,3-fucosylation and LeY on CD44 in RL95-2 (b) and Ishikawa (f) cells. Immunoprecipitation (IP): anti-CD44 antibody pulled down protein. Immune blot (IB): detection of α 1,3-fucosylation by LTL lectin and anti-LeY antibody. (c, g) Western blot analysis of CD44, LTL and LeY blocking on activation of p-GSK3β, GSK3β and β-catenin in RL95-2 (c) and Ishikawa (g) cells. (d, h) Western blot and statistical analysis of p-GSK3β, GSK3β and β-catenin in RL95-2 (d) and Ishikawa (h) cells. DKK: inhibitor of Wnt/β- catenin signal pathway. *Po0.05, **Po0.01, ***Po0.

3). Isobavachalcone, a natural sirtuin 2 inhibitor, exhibits anti-triple-negative breast cancer efficacy in vitro and in vivo. Phytotherapy research : PTR, 2024 (PubMed: 38349045) [IF=7.2]

4). Oxysterol-binding protein-like 2 contributes to the developmental progression of preadipocytes by binding to β-catenin. Cell Death Discovery, 2021 (PubMed: 34001864) [IF=7.0]

Application: WB    Species: Human    Sample: HEK293T cells

Fig. 2 OSBPL2/ORP2 binds to β-catenin. A Mass spectrometry data of the HEK293T cells expressing FLAG-tagged OSBPL2 were used to identify and evaluated the OSBPL2 interactome and categorized its components by COG and KEGG analyses. B 3T3-L1 preadipocytes were transfected with FLAG-tagged Osbpl2 plasmid for 48 h. Co-IP assays were used to verify the interaction of FLAG-tagged OSBPL2 with endogenous β-catenin in 3T3-L1 preadipocytes. C Panoramic view (right) and amplified view (left) showing the bond between β-catenin (green) and OSBPL2 (rose red). Binding sites 1, ORD in OSBPL2 (Asp-310, Gly-359) and Arm repeats in β-catenin (Ser-351 and Ser-352 residues); binding sites 2, ORD in OSBPL2 (Gln-375, Pro-370, and Thr-368 residues) and Arm repeats in β-catenin (Tyr-604, Pro-606, and Ile-607 residues). D Schematic representing the OSBPL2, β-catenin, and truncated proteins. E Co-IP assays were used to verify the interaction of OSBPL2 with β-catenin or the truncated (N-terminal, SRP, and C-terminal) fractions in HEK293T cells. HEK293T cells co-expressing the truncated HA-tagged (N-terminal) β-catenin and FLAG-tagged OSBPL2 were used as negative controls. F Co-IP assays were used to verify the interaction of β-catenin with the truncated OSBPL2 (ORD). HEK293T cells expressing HA-tagged β-catenin only were used as a negative control. G Co-IP assays were used to verify the interaction of the ORD of OSBPL2 with β-catenin or truncated (SRP or C-terminal) fraction. HEK293T cells expressing HA-tagged β-catenin only were used as a negative control. All data are from three independent experiments. The data are presented as the mean ± SD values (n ≥ 3). ***P < 0.001.

5). Effects of type II collagen hydrolysates on osteoarthritis through the NF-κB, Wnt/β-catenin and MAPK pathways. Food & Function, 2022 (PubMed: 35018959) [IF=6.1]

6). Hypoxia-inducible factor 1α-induced epithelial-mesenchymal transition of endometrial epithelial cells may contribute to the development of endometriosis. HUMAN REPRODUCTION, 2016 (PubMed: 27094478) [IF=6.1]

Application: WB    Species: human    Sample:

Figure 2 The expression of epithelial –mesenchymal transition (EMT) markers and b-catenin was detected at each time point. (A) Immunoblotting analysis of human primary cultured endometrial epithelial cell extracts using the corresponding antibodies. The ratios of each protein relative to non-treated cells were normalized to GAPDH. (B) The relative expression of HIF-1a, N-cadherin, E-cadherin, b-catenin, vimentin and snail proteins in human endometrial epithelial glands under hypoxic conditions at each time point was investigated by western blot. Data are represented as mean+SD and are representative of the relative expression of protein normalized by GAPDH. All experiments were repeated four times. Data were evaluated by one-way ANOVA analysis (*P , 0.05, **P , 0.01 compared with untreated group). (C) The changed cellular morphologies of human endometrial epithelial glands in hypoxia compared with cells in normoxia, the hypoxic time was 48 h. Red arrows indicate the spindle-shaped and fibroblast-like cells.

Application: IHC    Species: human    Sample:

Figure 1 EMT occurs in endometrial epithelial cells of ovarian endometriosis samples. Representative photomicrographs of HIF-1a (A–C), b-catenin (D–F), E-cadherin (G–I), N-cadherin (J–L) and vimentin (M–O) in normal endometrium (A, D, G, J, M), eutopic endometrium (B, E, H, K, N) and ovarian endometriosis (C, F, I, L,O). (P)Colon cancer tissue that was positive for HIF-1a. (Q) Healthy liver tissue that was negative for HIF-1a. (R) Peptide-blocking reagent without antibody was applied as the negative controls. Photographs were taken at magnifications of ×200 (left panels) and ×400 (right panels). N, normal endometrium; U, eutopic endometrium; E, ovarian endometriosis.

7). TGFβ1-Induced Fibrotic Responses of Conjunctival Fibroblasts through the Wnt/β-Catenin/CRYAB Signaling Pathway. The American journal of pathology, 2024 (PubMed: 38879081) [IF=6.0]

Application: WB    Species: Human    Sample: HConFs

Figure 1 Activation of Wnt/β-catenin in TGFβ1-induced HConFs. A: Identification of human conjunctival fibroblasts. Immunostaining of vimentin and keratin in HConFs was used to detect fibroblast features of the cultured cells. Vimentin (green) was positively expressed, while keratin (red) was negatively expressed. The morphology of HConFs in bright-field presents as the typical spindle shape (right panel). B: Volcano plots of differentially expressed proteins (DEPs) between the TGFβ1 and control (CON) groups. C: KEGG enrichment analysis of DEPs between the TGFβ1 and CON groups. Significant enrichment of the KEGG pathways are visualized by bubble maps. The boxed region indicates the has04310 Wnt-signaling pathway. D: Protein intensities of LRP5/6 and CTNNB1, as detected by liquid chromatography–tandem mass spectrometry. Levels of LRP5/6 and CTNNB1 are significantly improved in TGFβ1-induced HConFs E: mRNA levels of members of the Wnt pathway (WNT3A, LEF1, CTNNB1, AXIN2, SFRP1, LRP5, and LRP6). F and G: Representative images (F) and quantitative analysis (G) of fluorescence-labeled β-catenin. TGFβ1 promotes the nuclear translocation of β-catenin. The arrows indicate nuclear-located β-catenin. H and I: Nuclear distribution of β-catenin, as detected by Western blot analysis. TGFβ1 increases the expression of β-catenin in the nucleus. Data are expressed as means ± SD. n = 3 (D and E); n = 5 (I); n = 8 (G). ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. Scale bars = 50 μm. Original magnification, ×100 (A, bright-field image). AXIN, axis inhibition protein; CTNN, catenin; ECM, extracellular matrix; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; KEGG, Kyoto Encyclopedia of Genes and Genomes pathways; LEF, lymphoid enhancer–binding factor; LRP, low-density lipoprotein receptor–related protein; SFRP, secreted frizzled-related protein.

Application: IF/ICC    Species: Human    Sample: HConFs

Figure 1 Activation of Wnt/β-catenin in TGFβ1-induced HConFs. A: Identification of human conjunctival fibroblasts. Immunostaining of vimentin and keratin in HConFs was used to detect fibroblast features of the cultured cells. Vimentin (green) was positively expressed, while keratin (red) was negatively expressed. The morphology of HConFs in bright-field presents as the typical spindle shape (right panel). B: Volcano plots of differentially expressed proteins (DEPs) between the TGFβ1 and control (CON) groups. C: KEGG enrichment analysis of DEPs between the TGFβ1 and CON groups. Significant enrichment of the KEGG pathways are visualized by bubble maps. The boxed region indicates the has04310 Wnt-signaling pathway. D: Protein intensities of LRP5/6 and CTNNB1, as detected by liquid chromatography–tandem mass spectrometry. Levels of LRP5/6 and CTNNB1 are significantly improved in TGFβ1-induced HConFs E: mRNA levels of members of the Wnt pathway (WNT3A, LEF1, CTNNB1, AXIN2, SFRP1, LRP5, and LRP6). F and G: Representative images (F) and quantitative analysis (G) of fluorescence-labeled β-catenin. TGFβ1 promotes the nuclear translocation of β-catenin. The arrows indicate nuclear-located β-catenin. H and I: Nuclear distribution of β-catenin, as detected by Western blot analysis. TGFβ1 increases the expression of β-catenin in the nucleus. Data are expressed as means ± SD. n = 3 (D and E); n = 5 (I); n = 8 (G). ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. Scale bars = 50 μm. Original magnification, ×100 (A, bright-field image). AXIN, axis inhibition protein; CTNN, catenin; ECM, extracellular matrix; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; KEGG, Kyoto Encyclopedia of Genes and Genomes pathways; LEF, lymphoid enhancer–binding factor; LRP, low-density lipoprotein receptor–related protein; SFRP, secreted frizzled-related protein.

8). TNIK drives castration-resistant prostate cancer via phosphorylating EGFR. iScience, 2024 (PubMed: 38226156) [IF=5.8]

Application: IHC    Species: Mouse    Sample:

Figure 6 Targeting TNIK suppresses CRPC tumor progression in vivo (A) C4-2 cells were implanted subcutaneously in male BALB/c mice. When tumors became palpable, mice administered daily by oral gavage either with vehicle (10% DMSO in PBS) or NCB0846 (80 mg/kg of body weight) for 10 days (n = 4 mice for each treatment). Tumor volumes were measured with calipers. (B) Tumor size of xenografts of the above represented the growth of tumor over 10 days (n = 4) in athymic nude mice (p < 0.001). Data are shown as mean ± SD. (C) Tumor weight of the control mice tumors and NCB-0846-treated mice tumors (p < 0.001). Data are shown as mean ± SD. (D) Body weight of nude mice after implantation of control or C4-2 xenografts and treatment with vehicle or NCB-0846 for 4 weeks. (E) Quantitation of Ki-67, TNIK, p-EGFR, β-catenin, vimentin, E-cadherin, BMP6, and BMP7 expressions in C4-2 xenograft tumors from each group; specimens were got at 10 days posttreatment. Scale bars: 500 μm. The IHC was scored according to number of cells expressing the indicated proteins, and statistical analysis was performed (non-parametric Kruskal-Wallis test) in order to determine significance. Data are shown as mean ± SD.

9). LXA4 protects against hypoxic-ischemic damage in neonatal rats by reducing the inflammatory response via the IκB/NF-κB pathway. International Immunopharmacology, 2020 (PubMed: 33096360) [IF=5.6]

Application: WB    Species: rat    Sample: brain

Fig. 3. |LXA4 intervention may prevent BBB disruption following HI brain damage in neonatal rats. (C)Protein expression level of P120 and β-catenin 24 h after HI brain injury.

10). Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. International Immunopharmacology, 2022 (PubMed: 36155281) [IF=5.6]

Application: WB    Species: Mice    Sample: pTEC cells

Fig. 5. Transcriptome sequencing analysis of differential mRNAs after downregulation of A33 in LPS-stimulated pTEC cells (A) Violin plot of gene expression; (B) Based on the results of differential analysis, we screened genes with FDR < 0.05 and |log2FC|>1 as significantly differential genes, and the statistical histogram of differential genes. (C) The different genes volcano plot of LPS + siR-A33 vs LPS; (D) KEGG enrichment: the top 20 pathways with the smallest Q value. Inflammation-related pathways are in the red box, and pathways in which Wnt signaling first appears are in the blue box; (E) Heatmap of gene expression associated with wnt/β-catenin signaling; (F) Western blot analysis of Axin2 and β-catenin protein levels after down-regulation of A33. ***P < 0.001 vs LPS group.

Application: IHC    Species: Mice    Sample:

Fig. 6. HDG strongly inhibited the expression of Axin2 and β-catenin in vivo and in vitro, and A33 was the upstream regulatory LncRNA of Axin2 and β-catenin. (A) Immunohistochemistry results for Axin2 and β-catenin in each group; (B,C) Real-time PCR and WB results confirmed that mRNA and protein levels of Axin and β-catenin decreased significantly in HDG treatment group; (D) Immunohistochemistry results of Axin2 and β-catenin after knockdown of A33 in vivo; (E,F) Real-time PCR and WB results confirmed that HDG had a significantly inhibitory effect on Axin2 and β-catenin in LPS-induced pTEC; (G,H) Real-time PCR and WB confirmed that the expression of Axin2/β-catenin was synergistic with the expression of A33 after knockdown and over-expression in vitro. *P < 0.05, **P < 0.01, ***P < 0.001 vs Cis/LPS group; #P < 0.05, ###P < 0.001 vs Ctrl group.

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.