产品: RhoA 抗体
货号: AF6352
描述: Rabbit polyclonal antibody to RhoA
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat, Monkey
预测: Pig, Bovine, Sheep, Dog
分子量: 22kDa; 22kD(Calculated).
蛋白号: P61586
RRID: AB_2835157

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat,Monkey
预测:
Pig(100%), Bovine(100%), Sheep(100%), Dog(100%)
克隆:
Polyclonal
特异性:
RhoA Antibody detects endogenous levels of total RhoA.
RRID:
AB_2835157
引用格式: Affinity Biosciences Cat# AF6352, RRID:AB_2835157.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Aplysia ras related homolog 12; ARH12; ARHA; H 12; H12; Oncogene RHO H12; Ras homolog family member A; Ras homolog gene family member A; Rho A; Rho cDNA clone 12; RHO H12; RHO12; RHOA; RHOA_HUMAN; RHOH12; Small GTP binding protein Rho A; Transforming protein Rho A; Transforming protein RhoA;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
描述:
RhoA is a small G protein of the Rho family. Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers.
序列:
MAAIRKKLVIVGDGACGKTCLLIVFSKDQFPEVYVPTVFENYVADIEVDGKQVELALWDTAGQEDYDRLRPLSYPDTDVILMCFSIDSPDSLENIPEKWTPEVKHFCPNVPIILVGNKKDLRNDEHTRRELAKMKQEPVKPEEGRDMANRIGAFGYMECSAKTKDGVREVFEMATRAALQARRGKKKSGCLVL

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Bovine
100
Sheep
100
Dog
100
Xenopus
70
Horse
0
Zebrafish
0
Chicken
0
Rabbit
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - P61586 作为底物

Site PTM Type Enzyme
K7 Ubiquitination
T19 Phosphorylation
S26 Phosphorylation
K27 Sumoylation
Y34 Phosphorylation
Y42 Phosphorylation
T60 Phosphorylation
Y66 Phosphorylation
S88 Phosphorylation P27361 (MAPK3)
T100 Phosphorylation P27361 (MAPK3)
K104 Ubiquitination
C107 S-Nitrosylation
K118 Ubiquitination
K119 Methylation
K119 Ubiquitination
T127 Phosphorylation
R128 Methylation
K133 Ubiquitination
K135 Ubiquitination
K140 Ubiquitination
Y156 Phosphorylation
C159 S-Nitrosylation
S160 Phosphorylation
K164 Ubiquitination
S188 Phosphorylation Q9H2G2 (SLK) , P17612 (PRKACA) , Q13976 (PRKG1)

研究背景

功能:

Small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. Mainly associated with cytoskeleton organization, in active state binds to a variety of effector proteins to regulate cellular responses such cytoskeletal dynamics, cell migration and cell cycle. Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization. Regulates KCNA2 potassium channel activity by reducing its location at the cell surface in response to CHRM1 activation; promotes KCNA2 endocytosis. May be an activator of PLCE1. In neurons, involved in the inhibiton of the initial spine growth. Upon activation by CaMKII, modulates dendritic spine structural plasticity by relaying CaMKII transient activation to synapse-specific, long-term signaling (By similarity).

(Microbial infection) Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague.

翻译修饰:

(Microbial infection) Substrate for botulinum ADP-ribosyltransferase.

(Microbial infection) Cleaved by yopT protease when the cell is infected by some Yersinia pathogens. This removes the lipid attachment, and leads to its displacement from plasma membrane and to subsequent cytoskeleton cleavage.

(Microbial infection) AMPylation at Tyr-34 and Thr-37 are mediated by bacterial enzymes in case of infection by H.somnus and V.parahaemolyticus, respectively. AMPylation occurs in the effector region and leads to inactivation of the GTPase activity by preventing the interaction with downstream effectors, thereby inhibiting actin assembly in infected cells. It is unclear whether some human enzyme mediates AMPylation; FICD has such ability in vitro but additional experiments remain to be done to confirm results in vivo.

(Microbial infection) Glycosylated at Tyr-34 by Photorhabdus asymbiotica toxin PAU_02230. Mono-O-GlcNAcylation by PAU_02230 inhibits downstream signaling by an impaired interaction with diverse regulator and effector proteins of Rho and leads to actin disassembly.

Phosphorylation by PRKG1 at Ser-188 inactivates RHOA signaling. Phosphorylation by SLK at Ser-188 in response to AGTR2 activation (By similarity).

Ubiquitinated by the BCR(KCTD13) and BCR(TNFAIP1) E3 ubiquitin ligase complexes, leading to its degradation by the proteasome, thereby regulating the actin cytoskeleton and synaptic transmission in neurons.

细胞定位:

Cell membrane>Lipid-anchor>Cytoplasmic side. Cytoplasm>Cytoskeleton. Cleavage furrow. Cytoplasm>Cell cortex. Midbody. Cell projection>Lamellipodium. Cell projection>Dendrite.
Note: Localized to cell-cell contacts in calcium-treated keratinocytes (By similarity). Translocates to the equatorial region before furrow formation in a ECT2-dependent manner. Localizes to the equatorial cell cortex (at the site of the presumptive furrow) in early anaphase in an activated form and in a myosin- and actin-independent manner.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
亚基结构:

Interacts with ARHGEF28 (By similarity). Interacts (via GTP-bound form) with RIPOR1 (via N-terminus); this interaction links RHOA to STK24 and STK26 kinases. Interacts with RIPOR2 (via active GTP- or inactive GDP-bound forms) isoform 1 and isoform 2; these interactions are direct, block the loading of GTP to RHOA and decrease upon chemokine CCL19 stimulation in primary T lymphocytes. Binds PRKCL1, ROCK1 and ROCK2. Interacts with ARHGEF2, ARHGEF3, NET1 and RTKN. Interacts with PLCE1 and AKAP13. Interacts with DIAPH1. Interacts (in the constitutively activated, GTP-bound form) with DGKQ. Interacts with RACK1; enhances RHOA activation. Interacts with PKP4; the interaction is detected at the midbody. Interacts (GTP-bound form preferentially) with PKN2; the interaction stimulates autophosphorylation and phosphorylation of PKN2. Interacts with ARHGDIA; this interaction inactivates and stabilizes RHOA. Interacts with ARHGDIB. Interacts (GTP-bound form) with KCNA2 (via cytoplasmic N-terminal domain).

(Microbial infection) Interacts with yopT from Yersinia pestis.

(Microbial infection) Interacts with human respiratory syncytial virus (HRSV) protein F; this interaction facilitates virus-induced syncytium formation.

蛋白家族:

The basic-rich region is essential for yopT recognition and cleavage.

Belongs to the small GTPase superfamily. Rho family.

研究领域

· Cellular Processes > Transport and catabolism > Endocytosis.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Focal adhesion.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Adherens junction.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Tight junction.   (View pathway)

· Cellular Processes > Cell motility > Regulation of actin cytoskeleton.   (View pathway)

· Environmental Information Processing > Signal transduction > Ras signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Rap1 signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > cGMP-PKG signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > cAMP signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Phospholipase D signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > mTOR signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Wnt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TGF-beta signaling pathway.   (View pathway)

· Human Diseases > Infectious diseases: Bacterial > Bacterial invasion of epithelial cells.

· Human Diseases > Infectious diseases: Bacterial > Pathogenic Escherichia coli infection.

· Human Diseases > Infectious diseases: Bacterial > Pertussis.

· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Organismal Systems > Immune system > Chemokine signaling pathway.   (View pathway)

· Organismal Systems > Circulatory system > Vascular smooth muscle contraction.   (View pathway)

· Organismal Systems > Development > Axon guidance.   (View pathway)

· Organismal Systems > Immune system > Platelet activation.   (View pathway)

· Organismal Systems > Immune system > NOD-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > T cell receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Leukocyte transendothelial migration.   (View pathway)

· Organismal Systems > Nervous system > Neurotrophin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Oxytocin signaling pathway.

· Organismal Systems > Digestive system > Pancreatic secretion.

文献引用

1). MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis. Nature Communications, 2023 (PubMed: 37563135) [IF=16.6]

Application: WB    Species: Mouse    Sample:

Fig. 4 Dysregulated protein phosphorylation in MTH1-deficient platelets after thrombin stimulation. a MTH1fl/fl or MTH1−/− platelets were treated with thrombin (1 U/ml) for 3 min followed by quantitative phosphoproteomics assay. b Differentially expressed phosphopeptides between two groups were presented as volcano map. X-axis shows the fold change (logarithmic conversion based on 2) and Y-axis shows the P-value (logarithmic conversion based on 10). Red dots represented the differentially upregulated phosphopeptides with significance and Blue dots showed the differentially downregulated phosphopeptides with significance. KEGG pathway analysis between control and MTH1-deficient platelets under the condition of resting (MA/NA) (c) or stimulation (MB/NB) (d). e MTH1fl/fl or MTH1−/− platelets were stimulated with thrombin (1 U/ml) followed by measuring the phosphorylation level of p38 MAPK, AKT, PLCβ3 and RhoA. The data were quantified based on three independent experiments (mean ± SD, n = 3 independent isolated platelets, two-way ANOVA with Sidak multiple comparisons test). f The number of differentially expressed phosphopeptides among the four groups. g Details of the 2 differentially expressed phosphopeptides localized in the mitochondria with significance identified from the comparison of control and MTH1-deficient platelets after thrombin stimulation (n = 3 independent experiments, two-tailed unpaired Student’s t test).

2). Mechanism of delayed encephalopathy after acute carbon monoxide poisoning. Neural Regeneration Research, 2020 (PubMed: 32594050) [IF=6.1]

3). Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. JOURNAL OF CELLULAR PHYSIOLOGY, 2019 (PubMed: 30536538) [IF=5.6]

Application: WB    Species: human    Sample: HUVECs cells

FIGURE 4 | Gal‐3 increases the expression of integrin β1, GTP‐RhoA and p‐JNK in ox‐LDL induced HUVECs. After exposure to Gal‐3, ox‐LDL or their combination, the expression of integrin β1 was detected by IF, (a) WB was used to measure the protein levels of integrin β1, RhoA, JNK,GTP‐RhoA, and p‐JNK (b). The relative protein expression was further indicated using histograms (c). **p < 0.01, ##p < 0.01

4). Comparative Phosphoproteomics of Neuro-2a Cells under Insulin Resistance Reveals New Molecular Signatures of Alzheimer’s Disease. International Journal of Molecular Sciences, 2022 (PubMed: 35055191) [IF=5.6]

Application: WB    Species: Mice    Sample:

Figure 5 Comparative informatic analysis of phosphoproteomes of two different insulin-resistant conditions. (A) Comparative canonical pathway analysis between the phosphoproteomes. The positive and negative z-scores are shown in orange and blue, respectively. “Pal” and “TNF” indicate palmitate-induced insulin-resistant and TNF-α-induced insulin-resistant conditions, respectively. (B) The integrin pathway was the most downregulated pathway between the phosphoproteomes. The increased and decreased phosphorylation levels are shown in red and green, respectively. The red circles indicate the phosphoproteins commonly regulated by different insulin-resistant conditions. (C) Western blot of phospho-RhoA under palmitate-induced insulin-resistant conditions. Conditioned cell lysates were electrophoresed and blotted. “Insulin” indicates 100 nM of insulin treatment for 10 min. (D) The adenosine monophosphate-activated protein kinase pathway was the most downregulated pathway between the phosphoproteomes. (E) Western blot of phospho-protein kinase B and phospho-acetyl-CoA carboxylase under different insulin-resistant conditions. Conditioned cell lysates were electrophoresed and blotted. “Insulin” indicates 100 nM of insulin treatment for 10 min. (F) Comparative analysis for disease relation and biological functions. The positive and negative z-scores are shown in orange and blue color, respectively. “Pal” and “TNF” indicate palmitate-induced insulin-resistant condition and TNF-α-induced insulin-resistant condition, respectively.

5). Baicalin Attenuates Panton-Valentine Leukocidin (PVL)-Induced Cytoskeleton Rearrangement via Regulating the RhoA/ROCK/LIMK and PI3K/AKT/GSK-3β Pathways in Bovine Mammary Epithelial Cells. International journal of molecular sciences, 2023 (PubMed: 37833969) [IF=5.6]

6). Heat treatment of galangin and kaempferol inhibits their benefits to improve barrier function in rat intestinal epithelial cells: Galangin & kaempferol improve IEC-6 cells barrier function. The Journal of Nutritional Biochemistry, 2021 (PubMed: 33011286) [IF=5.6]

7). YAP regulates periodontal ligament cell differentiation into myofibroblast interacted with RhoA/ROCK pathway. JOURNAL OF CELLULAR PHYSIOLOGY, 2019 (PubMed: 30341888) [IF=5.6]

8). The diagnostic and prognostic role of RhoA in hepatocellular carcinoma. Aging (Albany NY), 2019 (PubMed: 31339860) [IF=5.2]

9). 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes injury-induced vascular neointima formation in mice. FASEB JOURNAL, 2019 (PubMed: 31216422) [IF=4.8]

10). Endostatin attenuates PDGF-BB- or TGF-β1-induced HSCs activation via suppressing RhoA/ROCK1 signal pathways. Drug Design Development and Therapy, 2019 (PubMed: 30666090) [IF=4.8]

Application: WB    Species: rat    Sample: HSC-T6 cells

Figure 4 |Endostatin inhibits the expression of α-SMA, RhoA, and ROCK1 at mRNA level.Notes: Transcript levels of α-SMA, RhoA, and ROCK1 were analyzed by RT-PCR (A–C). Endostatin significantly suppressed the expressions of α-SMA, RhoA, and ROCK1 at mRNA level in HSC-T6 cells. Data are expressed as mean ± SD. **P,0.01 (n=3 per group).

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.