产品: | IKK gamma 抗体 |
货号: | AF6496 |
描述: | Rabbit polyclonal antibody to IKK gamma |
应用: | WB IF/ICC |
反应: | Human |
预测: | Rat, Pig, Horse, Rabbit |
分子量: | 43kDa; 48kD(Calculated). |
蛋白号: | Q9Y6K9 |
RRID: | AB_2835307 |
产品描述
*The optimal dilutions should be determined by the end user.
*Tips:
WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.
引用格式: Affinity Biosciences Cat# AF6496, RRID:AB_2835307.
展开/折叠
IkB kinase associated protein 1; IkB kinase subunit gamma; Inhibitor of nuclear factor kappa B kinase subunit gamma; AMCBX1; FIP 3; FIP-3; FIP3; Fip3p; I kappa B kinase gamma; I-kappa-B kinase subunit gamma; IkB kinase gamma subunit; IkB kinase subunit gamma; IkB kinase-associated protein 1; Ikbkg; IKK-gamma; IKKAP1; IKKG; IMD33; Incontinentia pigmenti; Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase gamma; Inhibitor of kappa light polypeptide gene enhancer in B cells, kinase of, gamma; Inhibitor of nuclear factor kappa-B kinase subunit gamma; IP; IP1; IP2; IPD2; NEMO; NEMO_HUMAN; NF kappa B essential modifier; NF kappa B essential modulator; NF-kappa-B essential modifier; NF-kappa-B essential modulator; ZC2HC9;
抗原和靶标
- Q9Y6K9 NEMO_HUMAN:
- Protein BLAST With
- NCBI/
- ExPASy/
- Uniprot
MNRHLWKSQLCEMVQPSGGPAADQDVLGEESPLGKPAMLHLPSEQGAPETLQRCLEENQELRDAIRQSNQILRERCEELLHFQASQREEKEFLMCKFQEARKLVERLGLEKLDLKRQKEQALREVEHLKRCQQQMAEDKASVKAQVTSLLGELQESQSRLEAATKECQALEGRARAASEQARQLESEREALQQQHSVQVDQLRMQGQSVEAALRMERQAASEEKRKLAQLQVAYHQLFQEYDNHIKSSVVGSERKRGMQLEDLKQQLQQAEEALVAKQEVIDKLKEEAEQHKIVMETVPVLKAQADIYKADFQAERQAREKLAEKKELLQEQLEQLQREYSKLKASCQESARIEDMRKRHVEVSQAPLPPAPAYLSSPLALPSQRRSPPEEPPDFCCPKCQYQAPDMDTLQIHVMECIE
种属预测
score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。
High(score>80) Medium(80>score>50) Low(score<50) No confidence
翻译修饰 - Q9Y6K9 作为底物
Site | PTM Type | Enzyme | Source |
---|---|---|---|
S8 | Phosphorylation | Uniprot | |
S17 | Phosphorylation | Uniprot | |
S31 | Phosphorylation | O14920 (IKBKB) | Uniprot |
S43 | Phosphorylation | O14920 (IKBKB) | Uniprot |
T50 | Phosphorylation | Q14164 (IKBKE) | Uniprot |
S68 | Phosphorylation | O14920 (IKBKB) | Uniprot |
S85 | Phosphorylation | Q13315 (ATM) , O14920 (IKBKB) | Uniprot |
K111 | Ubiquitination | Uniprot | |
K118 | Ubiquitination | Uniprot | |
K139 | Ubiquitination | Uniprot | |
S141 | Phosphorylation | Q14164 (IKBKE) | Uniprot |
K143 | Ubiquitination | Uniprot | |
S148 | Phosphorylation | Q14164 (IKBKE) | Uniprot |
K165 | Ubiquitination | Uniprot | |
S178 | Phosphorylation | Uniprot | |
S196 | Phosphorylation | Q14164 (IKBKE) | Uniprot |
S208 | Phosphorylation | Q14164 (IKBKE) | Uniprot |
K226 | Ubiquitination | Uniprot | |
K246 | Ubiquitination | Uniprot | |
S247 | Phosphorylation | Q14164 (IKBKE) | Uniprot |
S252 | Phosphorylation | Uniprot | |
K255 | Acetylation | Uniprot | |
K255 | Ubiquitination | Uniprot | |
K264 | Ubiquitination | Uniprot | |
K277 | Sumoylation | Uniprot | |
K277 | Ubiquitination | Uniprot | |
K283 | Ubiquitination | Uniprot | |
K285 | Ubiquitination | Uniprot | |
K292 | Ubiquitination | Uniprot | |
T297 | Phosphorylation | Uniprot | |
K302 | Ubiquitination | Uniprot | |
Y308 | Phosphorylation | Uniprot | |
K309 | Sumoylation | Uniprot | |
K309 | Ubiquitination | Uniprot | |
K321 | Ubiquitination | Uniprot | |
K325 | Ubiquitination | Uniprot | |
K326 | Ubiquitination | Uniprot | |
K342 | Ubiquitination | Uniprot | |
K344 | Ubiquitination | Uniprot | |
K358 | Ubiquitination | Uniprot | |
Y374 | Phosphorylation | P12931 (SRC) | Uniprot |
S376 | Phosphorylation | O14920 (IKBKB) | Uniprot |
S377 | Phosphorylation | Uniprot | |
S383 | Phosphorylation | Uniprot | |
S387 | Phosphorylation | Uniprot | |
K399 | Ubiquitination | Uniprot |
翻译修饰 - Q9Y6K9 作为激酶
研究背景
Regulatory subunit of the IKK core complex which phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. Its binding to scaffolding polyubiquitin seems to play a role in IKK activation by multiple signaling receptor pathways. However, the specific type of polyubiquitin recognized upon cell stimulation (either 'Lys-63'-linked or linear polyubiquitin) and its functional importance is reported conflictingly. Also considered to be a mediator for TAX activation of NF-kappa-B. Could be implicated in NF-kappa-B-mediated protection from cytokine toxicity. Essential for viral activation of IRF3. Involved in TLR3- and IFIH1-mediated antiviral innate response; this function requires 'Lys-27'-linked polyubiquitination.
Phosphorylation at Ser-68 attenuates aminoterminal homodimerization.
Polyubiquitinated on Lys-285 through 'Lys-63'; the ubiquitination is mediated by NOD2 and RIPK2 and probably plays a role in signaling by facilitating interactions with ubiquitin domain-containing proteins and activates the NF-kappa-B pathway. Polyubiquitinated on Lys-399 through 'Lys-63'; the ubiquitination is mediated by BCL10, MALT1 and TRAF6 and probably plays a role in signaling by facilitating interactions with ubiquitin domain-containing proteins and activates the NF-kappa-B pathway. Monoubiquitinated on Lys-277 and Lys-309; promotes nuclear export. Polyubiquitinated through 'Lys-27' by TRIM23; involved in antiviral innate and inflammatory responses. Linear polyubiquitinated on Lys-111, Lys-143, Lys-226, Lys-246, Lys-264, Lys-277, Lys-285, Lys-292, Lys-302, Lys-309 and Lys-326; the head-to-tail polyubiquitination is mediated by the LUBAC complex and plays a key role in NF-kappa-B activation. Deubiquitinated by USP10 in a TANK-dependent and -independent manner, leading to the negative regulation of NF-kappa-B signaling upon DNA damage.
Sumoylated on Lys-277 and Lys-309 with SUMO1; the modification results in phosphorylation of Ser-85 by ATM leading to a replacement of the sumoylation by mono-ubiquitination on these residues.
Neddylated by TRIM40, resulting in stabilization of NFKBIA and down-regulation of NF-kappa-B activity.
(Microbial infection) Cleaved by hepatitis A virus (HAV) protease 3C allowing the virus to disrupt the host innate immune signaling.
(Microbial infection) Polyubiquitinated on Lys-309 and Lys-321 via 'Lys-27'-linked ubiquitin by Shigella flexneri E3 ubiquitin-protein ligase ipah9.8, leading to its degradation by the proteasome.
Cytoplasm. Nucleus.
Note: Sumoylated NEMO accumulates in the nucleus in response to genotoxic stress.
Heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas.
Homodimer; disulfide-linked. Component of the I-kappa-B-kinase (IKK) core complex consisting of CHUK, IKBKB and IKBKG; probably four alpha/CHUK-beta/IKBKB dimers are associated with four gamma/IKBKG subunits. The IKK core complex seems to associate with regulatory or adapter proteins to form a IKK-signalosome holo-complex. The IKK complex associates with TERF2IP/RAP1, leading to promote IKK-mediated phosphorylation of RELA/p65. Part of a complex composed of NCOA2, NCOA3, CHUK/IKKA, IKBKB, IKBKG and CREBBP. Interacts with COPS3, CYLD, NALP2, TRPC4AP and PIDD1. Interacts with ATM; the complex is exported from the nucleus. Interacts with TRAF6. Interacts with IKBKE. Interacts with TANK; the interaction is enhanced by IKBKE and TBK1. Part of a ternary complex consisting of TANK, IKBKB and IKBKG. Interacts with ZFAND5. Interacts with RIPK2. Interacts with TNIP1 and TNFAIP3; TNIP1 facilitates the TNFAIP3-mediated de-ubiquitination of IKBKG. Interacts with TNFAIP3; the interaction is induced by TNF stimulation and by polyubiquitin. Binds polyubiquitin; the interaction is mediated by two domains; reports about the binding to 'Lys-63'-linked and/or linear polyubiquitin, respective binding affinities and stoichiometry are conflicting. Interacts with NLRP10. Interacts with TANK; this interaction increases in response to DNA damage. Interacts with USP10; this interaction increases in response to DNA damage. Interacts with ZC3H12A; this interaction increases in response to DNA damage. Interacts with IFIT5; the interaction synergizes the recruitment of IKK to MAP3K7 and enhances IKK phosphorylation. Interacts with TRIM29; this interaction induces IKBKG/NEMO ubiquitination and proteolytic degradation. Interacts with TRIM13; this interaction leads to IKBKG/NEMO ubiquitination. Interacts with ARFIP2. Interacts with RIPK1 (By similarity).
(Microbial infection) Interacts with Molluscum contagiosum virus protein MC005; this interaction inhibits NF-kappa-B activation.
(Microbial infection) Interacts with HTLV-1 Tax oncoprotein; the interaction activates IKBKG.
(Microbial infection) Interacts with Shigella flexneri ipah9.8; the interaction promotes TNIP1-dependent 'Lys-27'-linked polyubiquitination of IKBKG which perturbs NF-kappa-B activation during bacterial infection.
The leucine-zipper domain and the CCHC NOA-type zinc-finger are essential for polyubiquitin binding and for the activation of IRF3.
研究领域
· Cellular Processes > Cell growth and death > Apoptosis. (View pathway)
· Environmental Information Processing > Signal transduction > MAPK signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > Ras signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > NF-kappa B signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > TNF signaling pathway. (View pathway)
· Human Diseases > Drug resistance: Antineoplastic > Antifolate resistance.
· Human Diseases > Infectious diseases: Bacterial > Epithelial cell signaling in Helicobacter pylori infection.
· Human Diseases > Infectious diseases: Bacterial > Shigellosis.
· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).
· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.
· Human Diseases > Infectious diseases: Viral > Hepatitis C.
· Human Diseases > Infectious diseases: Viral > Hepatitis B.
· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.
· Human Diseases > Infectious diseases: Viral > HTLV-I infection.
· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.
· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.
· Human Diseases > Cancers: Overview > Pathways in cancer. (View pathway)
· Human Diseases > Cancers: Overview > Viral carcinogenesis.
· Human Diseases > Cancers: Specific types > Pancreatic cancer. (View pathway)
· Human Diseases > Cancers: Specific types > Prostate cancer. (View pathway)
· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia. (View pathway)
· Human Diseases > Cancers: Specific types > Acute myeloid leukemia. (View pathway)
· Human Diseases > Cancers: Specific types > Small cell lung cancer. (View pathway)
· Human Diseases > Immune diseases > Primary immunodeficiency.
· Organismal Systems > Immune system > Chemokine signaling pathway. (View pathway)
· Organismal Systems > Development > Osteoclast differentiation. (View pathway)
· Organismal Systems > Immune system > Toll-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > NOD-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > RIG-I-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > Cytosolic DNA-sensing pathway. (View pathway)
· Organismal Systems > Immune system > IL-17 signaling pathway. (View pathway)
· Organismal Systems > Immune system > Th1 and Th2 cell differentiation. (View pathway)
· Organismal Systems > Immune system > Th17 cell differentiation. (View pathway)
· Organismal Systems > Immune system > T cell receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > B cell receptor signaling pathway. (View pathway)
· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.
限制条款
产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。
产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。
Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。产品仅供科学研究使用。不用于诊断和治疗。
产品未经授权不得转售。
Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.