产品: ATF6 抗体
货号: DF6009
描述: Rabbit polyclonal antibody to ATF6
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Zebrafish, Horse, Sheep, Rabbit, Dog, Xenopus
分子量: 50~75kD(cleaved),90~100kD(full); 75kD(Calculated).
蛋白号: P18850
RRID: AB_2833019

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(100%), Zebrafish(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Xenopus(100%)
克隆:
Polyclonal
特异性:
ATF6 Antibody detects endogenous levels of total ATF6.
RRID:
AB_2833019
引用格式: Affinity Biosciences Cat# DF6009, RRID:AB_2833019.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Activating transcription factor 6 alpha; Activating transcription factor 6; ATF 6; ATF6 alpha; ATF6; ATF6-alpha; ATF6A; ATF6A_HUMAN; cAMP dependent transcription factor ATF 6 alpha; cAMP-dependent transcription factor ATF-6 alpha; Cyclic AMP dependent transcription factor ATF 6 alpha; DKFZp686P2194; ESTM49; FLJ21663; Processed cyclic AMP dependent transcription factor ATF 6 alpha; Processed cyclic AMP-dependent transcription factor ATF-6 alpha;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
P18850 ATF6A_HUMAN:

Ubiquitous.

描述:
This gene encodes a transcription factor that activates target genes for the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. Although it is a transcription factor, this protein is unusual in that it is synthesized as a transmembrane protein that is embedded in the ER. It functions as an ER stress sensor/transducer, and following ER stress-induced proteolysis, it functions as a nuclear transcription factor via a cis-acting ER stress response element (ERSE) that is present in the promoters of genes encoding ER chaperones. This protein has been identified as a survival factor for quiescent but not proliferative squamous carcinoma cells. There have been conflicting reports about the association of polymorphisms in this gene with diabetes in different populations, but another polymorphism has been associated with increased plasma cholesterol levels. This gene is also thought to be a potential therapeutic target for cystic fibrosis. [provided by RefSeq, Aug 2011]
序列:
MGEPAGVAGTMESPFSPGLFHRLDEDWDSALFAELGYFTDTDELQLEAANETYENNFDNLDFDLDLMPWESDIWDINNQICTVKDIKAEPQPLSPASSSYSVSSPRSVDSYSSTQHVPEELDLSSSSQMSPLSLYGENSNSLSSAEPLKEDKPVTGPRNKTENGLTPKKKIQVNSKPSIQPKPLLLPAAPKTQTNSSVPAKTIIIQTVPTLMPLAKQQPIISLQPAPTKGQTVLLSQPTVVQLQAPGVLPSAQPVLAVAGGVTQLPNHVVNVVPAPSANSPVNGKLSVTKPVLQSTMRNVGSDIAVLRRQQRMIKNRESACQSRKKKKEYMLGLEARLKAALSENEQLKKENGTLKRQLDEVVSENQRLKVPSPKRRVVCVMIVLAFIILNYGPMSMLEQDSRRMNPSVSPANQRRHLLGFSAKEAQDTSDGIIQKNSYRYDHSVSNDKALMVLTEEPLLYIPPPPCQPLINTTESLRLNHELRGWVHRHEVERTKSRRMTNNQQKTRILQGALEQGSNSQLMAVQYTETTSSISRNSGSELQVYYASPRSYQDFFEAIRRRGDTFYVVSFRRDHLLLPATTHNKTTRPKMSIVLPAININENVINGQDYEVMMQIDCQVMDTRILHIKSSSVPPYLRDQQRNQTNTFFGSPPAATEATHVVSTIPESLQ

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Horse
100
Sheep
100
Dog
100
Xenopus
100
Zebrafish
100
Rabbit
100
Bovine
0
Chicken
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - P18850 作为底物

Site PTM Type Enzyme
S16 Phosphorylation
K87 Sumoylation
K87 Ubiquitination
S94 Phosphorylation
Y100 Phosphorylation
S104 Phosphorylation
K152 Sumoylation
T166 Phosphorylation Q16539 (MAPK14)
K176 Acetylation
K176 Sumoylation
K176 Ubiquitination
K182 Sumoylation
K191 Sumoylation
K201 Ubiquitination
K216 Ubiquitination
K290 Sumoylation
K290 Ubiquitination
T296 Phosphorylation
Y330 Phosphorylation
K339 Ubiquitination
K349 Ubiquitination
S373 Phosphorylation
S410 Phosphorylation
K424 Ubiquitination
K436 Ubiquitination
N472 N-Glycosylation
K506 Ubiquitination
T565 Phosphorylation
N584 N-Glycosylation
K629 Ubiquitination
S632 Phosphorylation
N643 N-Glycosylation

研究背景

功能:

Transmembrane glycoprotein of the endoplasmic reticulum that functions as a transcription activator and initiates the unfolded protein response (UPR) during endoplasmic reticulum stress. Cleaved upon ER stress, the N-terminal processed cyclic AMP-dependent transcription factor ATF-6 alpha translocates to the nucleus where it activates transcription of genes involved in the UPR. Binds DNA on the 5'-CCAC[GA]-3'half of the ER stress response element (ERSE) (5'-CCAAT-N(9)-CCAC[GA]-3') and of ERSE II (5'-ATTGG-N-CCACG-3'). Binding to ERSE requires binding of NF-Y to ERSE. Could also be involved in activation of transcription by the serum response factor. May play a role in foveal development and cone function in the retina.

翻译修饰:

During unfolded protein response, a fragment of approximately 50 kDa containing the cytoplasmic transcription factor domain is released by proteolysis. The cleavage seems to be performed sequentially by site-1 and site-2 proteases.

N-glycosylated. The glycosylation status may serve as a sensor for ER homeostasis, resulting in ATF6 activation to trigger the unfolded protein response (UPR).

Phosphorylated in vitro by MAPK14/P38MAPK.

细胞定位:

Endoplasmic reticulum membrane>Single-pass type II membrane protein.

Nucleus.
Note: Under ER stress the cleaved N-terminal cytoplasmic domain translocates into the nucleus. THBS4 promotes its nuclear shuttling.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Ubiquitous.

亚基结构:

Homodimer and heterodimer with ATF6-beta. The dimer interacts with the nuclear transcription factor Y (NF-Y) trimer through direct binding to NF-Y subunit C (NF-YC). Interacts also with the transcription factors GTF2I, YY1 and SRF. Interacts (via lumenal domain) with THBS1 (By similarity). Interacts with THBS4 (via EGF-like 3; calcium-binding domain) which facilitates its processing, activation and nuclear translocation. Interacts with XBP1 isoform 2; the interaction occurs in a ER stress-dependent manner.

蛋白家族:

The basic domain functions as a nuclear localization signal.

The basic leucine-zipper domain is sufficient for association with the NF-Y trimer and binding to ERSE.

Belongs to the bZIP family. ATF subfamily.

研究领域

· Genetic Information Processing > Folding, sorting and degradation > Protein processing in endoplasmic reticulum.   (View pathway)

· Human Diseases > Neurodegenerative diseases > Alzheimer's disease.

文献引用

1). Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics, 2020 (PubMed: 32373236) [IF=12.4]

Application: WB    Species: mouse    Sample: Heart

Figure 6. BCAA increase PPAR-α expression in a GCN2/ATF6 pathway-dependent manner. (A) Expression of p-GCN2, GCN2 and ATF6 in the presence of increasing concentrations of BCAA (0, 0.429 mM, 0.858 mM, 1.716 mM, 3.432 mM) by western blotting (n=6). (B) Expression of p-GCN2, GCN2 and ATF6 in the presence of increasing concentrations of BCKA (0, 0.429 mM, 0.858 mM, 1.716 mM, 3.432 mM) by western blotting (n=6). BCKA mixture is composed of αKIC, αKIV and αKMV (weight ratio, αKIC: αKIV: αKMV= 2:1:1). (C) NRVMs were treated with control siRNA and ATF6 siRNA. 48 h after transfection, expression of ATF6 was determined by western blotting (n=4). (D-E) ATF6 siRNA transferred NRVMs were treated with or without BCAA (3.432 mM) (n=6). (D) PPAR-α expression was determined by western blotting. (E) Expression of Acaa2, Acadm, Cd36 and Cpt1b by real-time PCR. (F-G) ATF6 siRNA transferred NRVMs were treated with or without BCKA (3.432 mM) (n=6). (F) PPAR-α expression was determined by western blotting. (G) Expression of Acaa2, Acadm, Cd36 and Cpt1b by real-time PCR. (C) Data were analyzed by Student’s t test. (A-B) and (D-G) Data were analyzed by one-way ANOVA, followed by a Bonferroni post-hoc test. * P<0.05, ** P<0.01. All values are presented as mean ± SEM.

2). Sleep Deprivation Induces Gut Damage via Ferroptosis. Journal of pineal research, 2024 (PubMed: 38975671) [IF=8.3]

3). Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress. Acta Pharmacologica Sinica, 2020 (PubMed: 32647341) [IF=6.9]

Application: WB    Species: mice    Sample: NRCMs

Fig. 6 Zonisamide alleviates HG-induced cardiac hypertrophy and apoptosis in cultured primary neonatal rat cardiomyocytes (NRCMs) via suppression of activated ER stress. NRCMs were pretreated with 5 mM 4-PBA (an inhibitor of ERS) or 10 ng/mL tunicamycin (Tm, an ERS inducer) for 2 h and then exposed to glucose (33 mM) in the presence or absence of ZNS (3 μM) for 24 h. a–b Representative and quantitative images showing the protein expression of ERS markers, including GRP78, XBP-1s, ATF6, p-PERK, PERK, ATF4, CHOP, and Hrd1. c Immunofluorescence staining of cardiomyocytes with phalloidin (red) and cell nuclei with DAPI (blue), Scale bar = 50 μm. d Quantitative analysis of cell surface area by ImageJ software. e–f Representative Western blotting and analysis of Bax and Bcl-2 expression. g–h Representative and quantitative images of GRP78, ATF6, p-PERK, PERK, ATF4, and CHOP expression. All values are the fold changes normalized to their control group. The results are presented as the means ± SEM (n = 6). *P < 0.05, **P < 0.01 vs. Con; #P < 0.05, ##P < 0.01 vs. HG; $P < 0.05, $$P < 0.01 vs. HG + ZNS.

4). PPM1H is down-regulated by ATF6 and dephosphorylates p-RPS6KB1 to inhibit progression of hepatocellular carcinoma. Molecular therapy. Nucleic acids, 2023 (PubMed: 37456776) [IF=6.5]

Application: WB    Species: Human    Sample: Hep-G2 cells

Figure 4. PPM1H directly dephosphorylated p-RPS6KB1 A–C) 24 h after transfection, cells were cultured in basal medium without serum overnight; insulin (10 ng/μL) was added 2 h before harvest to activate phosphorylation of RPS6KB1. (A) FLAG-PPM1H was transfected into Hep-G2 cells with or without insulin treatment, and coIP was performed to examine the level of RPS6KB1 combined with PPM1H. (B) CoIP analysis of PPM1H and RPS6KB1 in FLAG-RPS6KB1-transfected Hep-G2 cells with or without insulin treatment. (C) Western blot analysis of the indicated protein levels in PPM1H-overexpressing Hep-G2 cells with or without insulin treatment. (D) In vitro phosphatase assay to determine the interaction between PPM1H and p-RPS6KB1. (E and F) Western blot analysis of the indicated protein levels in vector, ATF6, sh-NC, and sh-ATF6 transfected Hep-G2 cells (E) and in liver tissues of Atf6fl/fl or Atf6Δhep mice. (G) The RPS6KB1 inhibitor PF-4708671 was added to cells at a concentration of 10 μM, which effectively blocked phosphorylation of p-RPS6KB1. Transwell assays revealed that the migration and invasion of PF-4708671-treated Hep-G2 and Huh-7 cells showed little difference between vector and PPM1H. Magnification, ×100. (H) Quantification of (G). Data represent the mean ± SD of three independent experiments. ns, not significant.

5). Patulin induces ROS-dependent cardiac cell toxicity by inducing DNA damage and activating endoplasmic reticulum stress apoptotic pathway. Ecotoxicology and environmental safety, 2024 (PubMed: 38061079) [IF=6.2]

Application: WB    Species: Human    Sample:

Fig. 7. Western blot detection of protein expression associated with ERS. (A) The protein expression of GRP78, PERK, IRE1, ATF6 and CHOP. (B-F) Statistical analysis of the protein expression (n = 3, mean ± SD. *p 

6). Fine particulate matter promotes airway inflammation and mucin production by activating endoplasmic reticulum stress and the IRE1α/NOD1/NF‑κB pathway. International Journal of Molecular Medicine, 2023 (PubMed: 37654182) [IF=5.7]

Application: WB    Species: Human    Sample: HBE135-E6E7 cells

Figure 2 Expression of endoplasmic reticulum stress-related proteins in HBE135-E6E7 cells. Cells were exposed to 100 μg/ml PM2.5, or treated with 5 mmol/l 4-PBA prior to PM2.5 exposure. The levels of the aforementioned proteins were measured using western blot analysis. (A) The relative protein expression levels of GRP78 and CHOP are depicted as the ratio of each to β-actin. The relative p-IRE1α protein expression levels are presented as the ratio of p-IRE1α to IRE1α; β-actin blots were used as the loading control. (B) The same method was used to indicate the relative expression levels of NOD1 and ATF6 proteins. (C) Relative p-PERK protein expression levels. Data are presented as the mean ± SD (n=3 repeats per group). *P

7). Protective Effect of Patchouli Alcohol Against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating VLDL Metabolism in Rats. Frontiers in Pharmacology, 2019 (PubMed: 31632274) [IF=5.6]

Application: WB    Species: rat    Sample: liver

FIGURE 4 | PA treatment attenuated HFD-induced ER stress in rats. (A) Representative immunoreactive bands of GRP78, PERK, p-PERK, IRE1α, p-IRE1α, and ATF6

8). Naringin attenuates inflammatory injury to the bovine endometrium by regulating the endoplasmic reticulum stress-PI3K/AKT-autophagy axis. Frontiers in pharmacology, 2024 (PubMed: 39234103) [IF=5.6]

Application: WB    Species: bovine    Sample: bEECs

FIGURE 4. Effects of naringin on LPS-induced ERS. (A) The protein expressions of p-PERK, PERK, pIREα, IREα, and cleaved ATF6 were determined in triplicate by using Western blot analysis. n = 3. (B,C) A confocal image provided by immunofluorescence determined the expression levels of ATF4, XBP1, and ATF6 in bEECs. Scale bars: 50 μm and 10 μm (bottom, n = 2). (D) RT-qPCR analysis of ATF4, CHOP, and GRP78 mRNA expression normalized to the expression of GAPDH. n = 4. The data are presented as the mean ± SEM. Experiments were repeated n times with duplicate biological replicates. *p < 0.05; **p < 0.01; ***p < 0.001.

Application: IF/ICC    Species: bovine    Sample: bEECs

FIGURE 4. Effects of naringin on LPS-induced ERS. (A) The protein expressions of p-PERK, PERK, pIREα, IREα, and cleaved ATF6 were determined in triplicate by using Western blot analysis. n = 3. (B,C) A confocal image provided by immunofluorescence determined the expression levels of ATF4, XBP1, and ATF6 in bEECs. Scale bars: 50 μm and 10 μm (bottom, n = 2). (D) RT-qPCR analysis of ATF4, CHOP, and GRP78 mRNA expression normalized to the expression of GAPDH. n = 4. The data are presented as the mean ± SEM. Experiments were repeated n times with duplicate biological replicates. *p < 0.05; **p < 0.01; ***p < 0.001.

9). Peroxisome Proliferator-Activated Receptor-Gamma Reduces ER Stress and Inflammation via Targeting NGBR Expression. Frontiers in Pharmacology, 2022 (PubMed: 35111067) [IF=5.6]

Application: WB    Species: Human    Sample: HUVEC cells

FIGURE 6 PPARγ reduces tunicamycin-induced ER stress by regulating NGBR. (A–C) HUVEC cells in a six-well plate were transfected with control siRNA (NC siRNA) or NGBR siRNA for 24 h in serum-free medium, followed by switching the cells into complete medium to culture for another 24 h. After treatment with rosiglitazone (10 μM) for 12 h, the cells were treated with tunicamycin (0.5 μg/ml) with or without rosiglitazone for another 12 h. Expression of CHOP, BIP, NGBR p-PERK, p-IRE1α and c-ATF6 protein was determined by Western blot (A, B). Expression of CHOP, BIP and NGBR mRNA was determined by qPCR (C). Values were expressed as means ± SD. *p < 0.05; **p < 0.01; ns, not significant (n = 3). (D) liver total proteins were collected from Figure 4. Expression of BIP and CHOP in mouse liver was determined by Western blot. Values were expressed as means ± SD. *p < 0.05; **p < 0.01; ns, not significant (n = 3).

10). Chrysin ameliorates synovitis and fibrosis of osteoarthritic fibroblast-like synoviocytes in rats through PERK/TXNIP/NLRP3 signaling. Frontiers in Pharmacology, 2023 (PubMed: 37021049) [IF=5.6]

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.