产品: Retinoblastoma 抗体
货号: DF6840
描述: Rabbit polyclonal antibody to Retinoblastoma
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat
预测: Pig, Bovine, Horse, Sheep, Rabbit, Dog, Chicken
分子量: 110kDa; 106kD(Calculated).
蛋白号: P06400
RRID: AB_2838799

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 1250 现货
 100ul RMB¥ 2300 现货
 200ul RMB¥ 3000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat
预测:
Pig(86%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%)
克隆:
Polyclonal
特异性:
Retinoblastoma Antibody detects endogenous levels of total Retinoblastoma.
RRID:
AB_2838799
引用格式: Affinity Biosciences Cat# DF6840, RRID:AB_2838799.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

Exon 17 tumor GOS561 substitution mutation causes premature stop; GOS563 exon 17 substitution mutation causes premature stop; OSRC; Osteosarcoma; p105-Rb; P105RB; PP105; pp110; PPP1R130; pRb; Prepro retinoblastoma associated protein; Protein phosphatase 1 regulatory subunit 130; Rb; RB transcriptional corepressor 1; RB_HUMAN; RB1; RB1 gene; Retinoblastoma 1; Retinoblastoma suspectibility protein; Retinoblastoma-associated protein;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
P06400 RB_HUMAN:

Expressed in the retina. Expressed in foreskin keratinocytes (at protein level) (PubMed:20940255).

描述:
The retinoblastoma tumor suppressor protein, Rb, regulates cell proliferation by controlling progression through the restriction point within the G1-phase of the cell cycle (1). Rb has three functionally distinct binding domains and interacts with critical regulatory proteins including the E2F family of transcription factors, c-Abl tyrosine kinase, and proteins with a conserved LXCXE motif (2-4). Cell cycle-dependent phosphorylation by a CDK inhibits Rb target binding and allows cell cycle progression (5). Rb inactivation and subsequent cell cycle progression likely requires an initial phosphorylation by cyclin D-CDK4/6 followed by cyclin E-CDK2 phosphorylation (6). Specificity of different CDK/cyclin complexes has been observed in vitro (6-8) and cyclin D1 is required for Ser780 phosphorylation in vivo (9).
序列:
MPPKTPRKTAATAAAAAAEPPAPPPPPPPEEDPEQDSGPEDLPLVRLEFEETEEPDFTALCQKLKIPDHVRERAWLTWEKVSSVDGVLGGYIQKKKELWGICIFIAAVDLDEMSFTFTELQKNIEISVHKFFNLLKEIDTSTKVDNAMSRLLKKYDVLFALFSKLERTCELIYLTQPSSSISTEINSALVLKVSWITFLLAKGEVLQMEDDLVISFQLMLCVLDYFIKLSPPMLLKEPYKTAVIPINGSPRTPRRGQNRSARIAKQLENDTRIIEVLCKEHECNIDEVKNVYFKNFIPFMNSLGLVTSNGLPEVENLSKRYEEIYLKNKDLDARLFLDHDKTLQTDSIDSFETQRTPRKSNLDEEVNVIPPHTPVRTVMNTIQQLMMILNSASDQPSENLISYFNNCTVNPKESILKRVKDIGYIFKEKFAKAVGQGCVEIGSQRYKLGVRLYYRVMESMLKSEEERLSIQNFSKLLNDNIFHMSLLACALEVVMATYSRSTSQNLDSGTDLSFPWILNVLNLKAFDFYKVIESFIKAEGNLTREMIKHLERCEHRIMESLAWLSDSPLFDLIKQSKDREGPTDHLESACPLNLPLQNNHTAADMYLSPVRSPKKKGSTTRVNSTANAETQATSAFQTQKPLKSTSLSLFYKKVYRLAYLRLNTLCERLLSEHPELEHIIWTLFQHTLQNEYELMRDRHLDQIMMCSMYGICKVKNIDLKFKIIVTAYKDLPHAVQETFKRVLIKEEEYDSIIVFYNSVFMQRLKTNILQYASTRPPTLSPIPHIPRSPYKFPSSPLRIPGGNIYISPLKSPYKISEGLPTPTKMTPRSRILVSIGESFGTSEKFQKINQMVCNSDRVLKRSAEGSNPPKPLKKLRFDIEGSDEADGSKHLPGESKFQQKLAEMTSTRTRMQKQKMNDSMDTSNKEEK

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Horse
100
Bovine
100
Sheep
100
Dog
100
Chicken
100
Rabbit
100
Pig
86
Xenopus
0
Zebrafish
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - P06400 作为底物

Site PTM Type Enzyme
Phosphorylation
T5 Phosphorylation P11802 (CDK4)
S37 Phosphorylation
K63 Ubiquitination
K65 Ubiquitination
K94 Ubiquitination
K136 Ubiquitination
T140 Phosphorylation
K143 Ubiquitination
S149 Phosphorylation
S163 Phosphorylation
S230 Phosphorylation P24941 (CDK2)
Y239 Phosphorylation
T241 Phosphorylation
S249 Phosphorylation P24941 (CDK2) , P11802 (CDK4) , P05771 (PRKCB) , P06493 (CDK1)
T252 Phosphorylation P06493 (CDK1) , P05771 (PRKCB) , P24941 (CDK2) , P11802 (CDK4)
K265 Ubiquitination
K279 Ubiquitination
K289 Ubiquitination
K319 Ubiquitination
Y321 Phosphorylation
Y325 Phosphorylation
K327 Ubiquitination
K341 Ubiquitination
T345 Phosphorylation
S347 Phosphorylation
S350 Phosphorylation
T353 Phosphorylation
T356 Phosphorylation P24941 (CDK2) , P11802 (CDK4)
K359 Ubiquitination
S360 Phosphorylation
T373 Phosphorylation P06493 (CDK1) , P24941 (CDK2) , P11802 (CDK4)
K420 Ubiquitination
K427 Acetylation
K427 Ubiquitination
K432 Ubiquitination
Y454 Phosphorylation
K537 Ubiquitination
K548 Acetylation
S567 Phosphorylation Q16539 (MAPK14) , P24941 (CDK2)
K574 Ubiquitination
T583 Phosphorylation
S588 Phosphorylation
T601 Phosphorylation
Y606 Phosphorylation
S608 Phosphorylation P24941 (CDK2) , P11802 (CDK4)
S612 Phosphorylation O96017 (CHEK2) , O14757 (CHEK1) , Q00534 (CDK6) , P11802 (CDK4) , P24941 (CDK2)
S618 Phosphorylation
S624 Phosphorylation
T625 Phosphorylation
K640 Ubiquitination
K720 Sumoylation
Y771 Phosphorylation
S773 Phosphorylation
T774 Phosphorylation
R775 Methylation
T778 Phosphorylation
S780 Phosphorylation P11802 (CDK4) , P30279 (CCND2) , P17612 (PRKACA) , Q00534 (CDK6) , Q96GD4 (AURKB) , P05771 (PRKCB)
R787 Methylation
S788 Phosphorylation Q00534 (CDK6) , P11802 (CDK4)
Y790 Phosphorylation
K791 Ubiquitination
S794 Phosphorylation
S795 Phosphorylation P05771 (PRKCB) , P11802 (CDK4) , P50750 (CDK9) , Q00534 (CDK6) , Q00535 (CDK5)
R798 Methylation
Y805 Phosphorylation P00519 (ABL1)
S807 Phosphorylation P24941 (CDK2) , P50750 (CDK9) , Q00534 (CDK6) , P11802 (CDK4) , Q00526 (CDK3) , P06493 (CDK1) , Q00535 (CDK5)
K810 Methylation
K810 Ubiquitination
S811 Phosphorylation Q00534 (CDK6) , P06493 (CDK1) , P24941 (CDK2) , P11802 (CDK4) , Q00526 (CDK3) , P50750 (CDK9) , Q00535 (CDK5) , Q13131 (PRKAA1)
Y813 Phosphorylation
K814 Ubiquitination
S816 Phosphorylation
T821 Phosphorylation P24941 (CDK2) , Q00534 (CDK6) , P05771 (PRKCB)
T823 Phosphorylation
K824 Ubiquitination
T826 Phosphorylation Q00534 (CDK6) , P11802 (CDK4) , P24941 (CDK2)
S829 Phosphorylation
S834 Phosphorylation
S838 Phosphorylation
T841 Phosphorylation
S842 Phosphorylation
K844 Ubiquitination
K847 Ubiquitination
S855 Phosphorylation
R857 Methylation
K860 Methylation
K860 Ubiquitination
S862 Phosphorylation
S866 Phosphorylation
K870 Ubiquitination
K873 Acetylation
K874 Acetylation
S882 Phosphorylation
S895 Phosphorylation
K896 Acetylation
K896 Ubiquitination
K900 Ubiquitination
T905 Phosphorylation
S919 Phosphorylation
K925 Acetylation

研究背景

功能:

Key regulator of entry into cell division that acts as a tumor suppressor. Promotes G0-G1 transition when phosphorylated by CDK3/cyclin-C. Acts as a transcription repressor of E2F1 target genes. The underphosphorylated, active form of RB1 interacts with E2F1 and represses its transcription activity, leading to cell cycle arrest. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity).

(Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity.

翻译修饰:

Phosphorylated by CDK6 and CDK4, and subsequently by CDK2 at Ser-567 in G1, thereby releasing E2F1 which is then able to activate cell growth. Dephosphorylated at the late M phase. SV40 large T antigen, HPV E7 and adenovirus E1A bind to the underphosphorylated, active form of pRb. Phosphorylation at Thr-821 and Thr-826 promotes interaction between the C-terminal domain C and the Pocket domain, and thereby inhibits interactions with heterodimeric E2F/DP transcription factor complexes. Dephosphorylated at Ser-795 by calcineruin upon calcium stimulation. CDK3/cyclin-C-mediated phosphorylation at Ser-807 and Ser-811 is required for G0-G1 transition. Phosphorylated by CDK1 and CDK2 upon TGFB1-mediated apoptosis (By similarity).

N-terminus is methylated by METTL11A/NTM1 (By similarity). Monomethylation at Lys-810 by SMYD2 enhances phosphorylation at Ser-807 and Ser-811, and promotes cell cycle progression. Monomethylation at Lys-860 by SMYD2 promotes interaction with L3MBTL1.

Acetylated during keratinocyte differentiation. Acetylation at Lys-873 and Lys-874 regulates subcellular localization. Can be deacetylated by SIRT1.

细胞定位:

Nucleus.
Note: During keratinocyte differentiation, acetylation by KAT2B/PCAF is required for nuclear localization.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Expressed in the retina. Expressed in foreskin keratinocytes (at protein level).

亚基结构:

Interacts with ATAD5. Interacts with PRMT2, CDK1 and CDK2 (By similarity). The hypophosphorylated form interacts with and sequesters the E2F1 transcription factor. Interacts with heterodimeric E2F/DP transcription factor complexes containing TFDP1 and either E2F1, E2F3, E2F4 or E2F5, or TFDP2 and E2F4. The unphosphorylated form interacts with EID1, ARID3B, KDM5A, SUV39H1, MJD2A/JHDM3A and THOC1. Interacts with the N-terminal domain of TAF1. Interacts with SNW1, AATF, DNMT1, LIN9, LMNA, KMT5B, KMT5C, PELP1, UHRF2 and TMPO-alpha. May interact with NDC80. Interacts with GRIP1 and UBR4. Interacts with ARID4A and KDM5B. Interacts with E4F1 and LIMD1. Interacts with SMARCA4/BRG1 AND HDAC1 (By similarity). Interacts with PSMA3 and USP4. Interacts (when methylated at Lys-860) with L3MBTL1. Interacts with CHEK2; phosphorylates RB1. Interacts with CEBPA. P-TEFB complex interacts with RB1; promotes phosphorylation of RB1. Interacts with RBBP9; the interaction disrupts RB1 binding to E2F1 (By similarity). Interacts with KAT2B/PCAF and EP300/P300 (By similarity).

(Microbial infection) Interacts with adenovirus E1A protein.

(Microbial infection) Interacts with HPV E7 protein.

(Microbial infection) Interacts with SV40 large T antigen.

(Microbial infection) Interacts with human cytomegalovirus/HHV-5 protein UL123.

(Microbial infection) Interacts with molluscum contagiosum virus protein MC007.

蛋白家族:

The Pocket domain binds to the threonine-phosphorylated domain C, thereby preventing interaction with heterodimeric E2F/DP transcription factor complexes.

Belongs to the retinoblastoma protein (RB) family.

研究领域

· Cellular Processes > Cell growth and death > Cell cycle.   (View pathway)

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Specific types > Pancreatic cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Glioma.   (View pathway)

· Human Diseases > Cancers: Specific types > Prostate cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Melanoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Bladder cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Non-small cell lung cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Breast cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Gastric cancer.   (View pathway)

文献引用

1). Blockage of EGFR/AKT and mevalonate pathways synergize the antitumor effect of temozolomide by reprogramming energy metabolism in glioblastoma. Cancer communications (London, England), 2023 (PubMed: 37920878) [IF=16.2]

Application: WB    Species: Human    Sample: TBD0220, U-87 MG, and U-87 MG-EGFR-vIII cells

FIGURE 3 EGFR/AKT pathway regulates mitochondrial respiration and proliferation in GBM cells. (A-B) TBD0220 (A), and U-87 MG-EGFR-vIII cells (B) were treated with DMSO or 5 μmol/L MK-2206 for 24 h. The mitochondrial functions were monitored by Seahorse XF Cell Mito Stress test. The OCR, basal respiration, proton leak, and ATP production rates were measured as illustrated. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 (independent-sample Student's t-test for TBD0220; one-way ANOVA for U-87 MG). (C) ATP levels in TBD0220, U-87 MG, and U-87 MG-EGFR-vIII cells were analyzed after 24 h of treatments with DMSO or 5 μmol/L of MK-2206. ∗∗P < 0.01, ∗∗∗P < 0.001 (independent-sample Student's t-test for TBD0220; one-way ANOVA for U-87 MG). (D) The cell growth assay for TBD0220, U-87 MG, and U-87 MG-EGFR-vIII lines treated with DMSO, 5 μmol/L MK-2206, or 5 μmol/L MK-2206 plus 50 μmol/L ATP were performed. ∗∗∗P < 0.001 (two-way ANOVA). (E) The colony formation assay of TBD0220, U-87 MG, and U-87 MG-EGFR-vIII lines treated with DMSO or 1 μmol/L MK-2206. (F) Cell cycle distributions were analyzed by flow cytometry in TBD0220, U-87 MG, and U-87 MG-EGFR-vIII cells treated with DMSO or 5 μmol/L MK-2206. (G) Western blotting to show changes in expressions of CDK2, CDK4, CDK6, Cyclin D, RB, p-RB, and GAPDH in TBD0220, U-87 MG, and U-87 MG-EGFR-vIII cells treated with DMSO or MK-2206. Abbreviations: EGFR, epidermal growth factor receptor; AKT, AKT serine/threonine kinase 1; GBM, glioblastoma; ANOVA, analysis of variance; DMSO, dimethyl sulfoxide; CDK2, cyclin-dependent kinase 2; CDK4, cyclin-dependent kinase 4; CDK6, cyclin-dependent kinase 6; OCR, oxygen consumption rate.

2). TCA-phospholipid-glycolysis targeted triple therapy effectively suppresses ATP production and tumor growth in glioblastoma. Theranostics, 2023 (PubMed: 36276638) [IF=12.4]

Application: WB    Species: Human    Sample: TBD0220 and U87MG cells

Figure 3 Reduction in ATP production hinders cell proliferation and contributes to G1/S arrest in GBM. (A-B) The relative viability of TBD0220 (A) and U87MG (B) cells was measured using a CCK-8 kit (n = 3). (C-D) Colony formation assay to detect GBM cell growth (D), and the quantification of colony numbers (C) (n = 3). (E) Cell cycle analysis using flow cytometry after incubation with different treatments like EPIC (20 µM), AA (25 µM), or EPIC (20 µM) + AA (25 µM) for 48 h, and the results are plotted as a histogram (n = 3) (F) Representative western blotting showing the expression of p21 and Rb and their downstream targets. The results were normalized to Tubulin with the control group as 1. Protein expression was quantified by ImageJ. (G) Representative confocal images of CDK6 after the treatment with AA (25 µM), EPIC (20 µM), or EPIC (20 µM) + AA (25 µM) for 48 h (n = 6). (H) The quantitative analysis of fluorescence images of CDK6 (n = 6). All data are shown as the mean values ± SD, and p values are based on one-way or two-way ANOVA. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. Scale bar = 20 μm.

3). Combination LSD1 and HOTAIR-EZH2 inhibition disrupts cell cycle processes and induces apoptosis in glioblastoma cells. PHARMACOLOGICAL RESEARCH, 2021 (PubMed: 34246782) [IF=9.3]

4). Yi-Xin-Shu capsule ameliorates cardiac hypertrophy by regulating RB/HDAC1/GATA4 signaling pathway based on proteomic and mass spectrometry image analysis. Phytomedicine, 2022 (PubMed: 35679794) [IF=7.9]

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.