产品: Tubulin alpha 抗体
货号: AF7010
描述: Rabbit polyclonal antibody to Tubulin alpha
应用: WB IHC IF/ICC
反应: Human, Mouse, Rat, Pig, Bovine, Rabbit, Chicken, Plants, Fish
预测: Pig, Bovine, Horse, Sheep, Dog
分子量: 50kDa; 50kD(Calculated).
蛋白号: P68363 | Q71U36
RRID: AB_2839418

浏览相似产品>>

   规格 价格 库存
 50ul RMB¥ 450 现货
 100ul RMB¥ 750 现货
 200ul RMB¥ 1000 现货

货期: 当天发货

联系销售

产品描述

来源:
Rabbit
应用:
WB 1:5000-1:20000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.

反应:
Human,Mouse,Rat,Pig,Bovine,Rabbit,Chicken,Plants,Fish
预测:
Horse(100%), Sheep(100%), Dog(100%)
克隆:
Polyclonal
特异性:
Tubulin alpha Antibody detects endogenous levels of total Tubulin alpha.
RRID:
AB_2839418
引用格式: Affinity Biosciences Cat# AF7010, RRID:AB_2839418.
偶联:
Unconjugated.
纯化:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
别名:

展开/折叠

TUBA1A; Alpha-tubulin 3; B-ALPHA-1; Hum-a-tub1; TUBA3; Tubulin alpha-3 chain; Tubulin B-alpha-1; Tubulin alpha 1a; Tubulin alpha; Tubulin Alpha 1a; Tubulin alpha-1A chain;Tubulin alpha-1B chain;

抗原和靶标

免疫原:
Uniprot:
基因/基因ID:
表达:
Q71U36 TBA1A_HUMAN:

Expressed at a high level in fetal brain.

描述:
TUBA1B Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha-chain. Dimer of alpha and beta chains. Belongs to the tubulin family
序列:
MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFSETGAGKHVPRAVFVDLEPTVIDEVRTGTYRQLFHPEQLITGKEDAANNYARGHYTIGKEIIDLVLDRIRKLADQCTGLQGFLVFHSFGGGTGSGFTSLLMERLSVDYGKKSKLEFSIYPAPQVSTAVVEPYNSILTTHTTLEHSDCAFMVDNEAIYDICRRNLDIERPTYTNLNRLISQIVSSITASLRFDGALNVDLTEFQTNLVPYPRIHFPLATYAPVISAEKAYHEQLSVAEITNACFEPANQMVKCDPRHGKYMACCLLYRGDVVPKDVNAAIATIKTKRSIQFVDWCPTGFKVGINYQPPTVVPGGDLAKVQRAVCMLSNTTAIAEAWARLDHKFDLMYAKRAFVHWYVGEGMEEGEFSEAREDMAALEKDYEEVGVDSVEGEGEEEGEEY

MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFSETGAGKHVPRAVFVDLEPTVIDEVRTGTYRQLFHPEQLITGKEDAANNYARGHYTIGKEIIDLVLDRIRKLADQCTGLQGFLVFHSFGGGTGSGFTSLLMERLSVDYGKKSKLEFSIYPAPQVSTAVVEPYNSILTTHTTLEHSDCAFMVDNEAIYDICRRNLDIERPTYTNLNRLIGQIVSSITASLRFDGALNVDLTEFQTNLVPYPRIHFPLATYAPVISAEKAYHEQLSVAEITNACFEPANQMVKCDPRHGKYMACCLLYRGDVVPKDVNAAIATIKTKRTIQFVDWCPTGFKVGINYQPPTVVPGGDLAKVQRAVCMLSNTTAIAEAWARLDHKFDLMYAKRAFVHWYVGEGMEEGEFSEAREDMAALEKDYEEVGVDSVEGEGEEEGEEY

种属预测

种属预测:

score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Xenopus
0
Zebrafish
0
Chicken
0
Rabbit
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

翻译修饰 - P68363/Q71U36 作为底物

Site PTM Type Enzyme
S6 Phosphorylation
Y24 Phosphorylation
S38 Phosphorylation
K40 Acetylation
K40 Methylation
K40 Ubiquitination
T41 Phosphorylation
S48 Phosphorylation
T51 Phosphorylation
S54 Phosphorylation
T56 Phosphorylation
K60 Acetylation
K60 Sumoylation
K60 Ubiquitination
T73 Phosphorylation
T80 Phosphorylation
T82 Phosphorylation
Y83 Phosphorylation
T94 Phosphorylation
K96 Acetylation
K96 Sumoylation
K96 Ubiquitination
Y103 Phosphorylation
Y108 Phosphorylation
T109 Phosphorylation
K112 Acetylation
K112 Sumoylation
K112 Ubiquitination
K124 Acetylation
K124 Ubiquitination
S151 Phosphorylation
S158 Phosphorylation
Y161 Phosphorylation
K163 Acetylation
K163 Methylation
K163 Ubiquitination
K164 Ubiquitination
S165 Phosphorylation
K166 Ubiquitination
Y172 Phosphorylation
Y185 Phosphorylation
S187 Phosphorylation
T190 Phosphorylation
T191 Phosphorylation
T193 Phosphorylation
T194 Phosphorylation
S198 Phosphorylation
Y210 Phosphorylation
T223 Phosphorylation
Y224 Phosphorylation
T225 Phosphorylation
S236 Phosphorylation
S237 Phosphorylation
T253 Phosphorylation
T257 Phosphorylation
Y262 Phosphorylation
T271 Phosphorylation
Y272 Phosphorylation
S277 Phosphorylation
K280 Ubiquitination
Y282 Phosphorylation
S287 Phosphorylation
T292 Phosphorylation
K304 Ubiquitination
K311 Acetylation
K311 Ubiquitination
Y312 Phosphorylation
Y319 Phosphorylation
K326 Acetylation
K326 Sumoylation
K326 Ubiquitination
T334 Phosphorylation
K336 Acetylation
K336 Sumoylation
K336 Ubiquitination
T337 Phosphorylation
K338 Methylation
K338 Ubiquitination
T340 Phosphorylation
T349 Phosphorylation
K352 Acetylation
K352 Sumoylation
K352 Ubiquitination
Y357 Phosphorylation
T361 Phosphorylation
K370 Acetylation
K370 Sumoylation
K370 Ubiquitination
S379 Phosphorylation
K394 Acetylation
K394 Sumoylation
K394 Ubiquitination
Y399 Phosphorylation
K401 Acetylation
K401 Sumoylation
K401 Ubiquitination
Y408 Phosphorylation
S419 Phosphorylation
K430 Ubiquitination
Y432 Phosphorylation
S439 Phosphorylation
Y451 Phosphorylation
Site PTM Type Enzyme
S6 Phosphorylation
Y24 Phosphorylation
S38 Phosphorylation
K40 Acetylation
K40 Methylation
K40 Ubiquitination
T41 Phosphorylation
S48 Phosphorylation
T51 Phosphorylation
S54 Phosphorylation
T56 Phosphorylation
K60 Acetylation
K60 Sumoylation
K60 Ubiquitination
T73 Phosphorylation
T80 Phosphorylation
T82 Phosphorylation
Y83 Phosphorylation
T94 Phosphorylation
K96 Acetylation
K96 Sumoylation
K96 Ubiquitination
Y103 Phosphorylation
Y108 Phosphorylation
T109 Phosphorylation
K112 Acetylation
K112 Sumoylation
K112 Ubiquitination
K124 Acetylation
K124 Ubiquitination
S151 Phosphorylation
S158 Phosphorylation
Y161 Phosphorylation
K163 Acetylation
K163 Methylation
K163 Ubiquitination
K164 Ubiquitination
K166 Ubiquitination
Y172 Phosphorylation
Y185 Phosphorylation
S187 Phosphorylation
T190 Phosphorylation
T191 Phosphorylation
T193 Phosphorylation
T194 Phosphorylation
S198 Phosphorylation
Y210 Phosphorylation
T223 Phosphorylation
Y224 Phosphorylation
T225 Phosphorylation
S232 Phosphorylation
S236 Phosphorylation
S237 Phosphorylation
T239 Phosphorylation
S241 Phosphorylation
T253 Phosphorylation
T257 Phosphorylation
Y262 Phosphorylation
T271 Phosphorylation
Y272 Phosphorylation
S277 Phosphorylation
K280 Acetylation
K280 Ubiquitination
Y282 Phosphorylation
S287 Phosphorylation
T292 Phosphorylation
C295 S-Nitrosylation
K304 Ubiquitination
K311 Acetylation
K311 Ubiquitination
Y312 Phosphorylation
C315 S-Nitrosylation
C316 S-Nitrosylation
Y319 Phosphorylation
K326 Acetylation
K326 Sumoylation
K326 Ubiquitination
T334 Phosphorylation
K336 Acetylation
K336 Sumoylation
K336 Ubiquitination
T337 Phosphorylation
K338 Methylation
K338 Ubiquitination
R339 Methylation
S340 Phosphorylation
C347 S-Nitrosylation
T349 Phosphorylation
K352 Acetylation
K352 Sumoylation
K352 Ubiquitination
Y357 Phosphorylation
T361 Phosphorylation
K370 Acetylation
K370 Sumoylation
K370 Ubiquitination
C376 S-Nitrosylation
S379 Phosphorylation
K394 Acetylation
K394 Methylation
K394 Sumoylation
K394 Ubiquitination
Y399 Phosphorylation
K401 Acetylation
K401 Sumoylation
K401 Ubiquitination
Y408 Phosphorylation
S419 Phosphorylation
K430 Ubiquitination
Y432 Phosphorylation
S439 Phosphorylation
Y451 Phosphorylation

研究背景

功能:

Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain.

翻译修饰:

Some glutamate residues at the C-terminus are polyglutamylated, resulting in polyglutamate chains on the gamma-carboxyl group. Polyglutamylation plays a key role in microtubule severing by spastin (SPAST). SPAST preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity by SPAST increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold.

Some glutamate residues at the C-terminus are monoglycylated but not polyglycylated due to the absence of functional TTLL10 in human. Monoglycylation is mainly limited to tubulin incorporated into axonemes (cilia and flagella). Both polyglutamylation and monoglycylation can coexist on the same protein on adjacent residues, and lowering glycylation levels increases polyglutamylation, and reciprocally. The precise function of monoglycylation is still unclear (Probable).

Acetylation of alpha chains at Lys-40 is located inside the microtubule lumen. This modification has been correlated with increased microtubule stability, intracellular transport and ciliary assembly.

Methylation of alpha chains at Lys-40 is found in mitotic microtubules and is required for normal mitosis and cytokinesis contributing to genomic stability.

Nitration of Tyr-451 is irreversible and interferes with normal dynein intracellular distribution.

Undergoes a tyrosination/detyrosination cycle, the cyclic removal and re-addition of a C-terminal tyrosine residue by the enzymes tubulin tyrosine carboxypeptidase (VASH1 or VASH2) and tubulin tyrosine ligase (TTL), respectively.

Tyrosination promotes microtubule interaction with CAP-Gly domain-containing proteins such as CLIP1, CLIP2 and DCTN1 (By similarity). Tyrosination regulates the initiation of dynein-dynactin motility via interaction with DCTN1, which brings the dynein-dynactin complex into contact with microtubules. In neurons, tyrosinated tubulins mediate the initiation of retrograde vesicle transport (By similarity).

Detyrosination is involved in metaphase plate congression by guiding chromosomes during mitosis: detyrosination promotes interaction with CENPE, promoting pole-proximal transport of chromosomes toward the equator. Detyrosination increases microtubules-dependent mechanotransduction in dystrophic cardiac and skeletal muscle. In cardiomyocytes, detyrosinated microtubules are required to resist to contractile compression during contraction: detyrosination promotes association with desmin (DES) at force-generating sarcomeres, leading to buckled microtubules and mechanical resistance to contraction (By similarity).

细胞定位:

Cytoplasm>Cytoskeleton.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
亚基结构:

Dimer of alpha and beta chains. A typical microtubule is a hollow water-filled tube with an outer diameter of 25 nm and an inner diameter of 15 nM. Alpha-beta heterodimers associate head-to-tail to form protofilaments running lengthwise along the microtubule wall with the beta-tubulin subunit facing the microtubule plus end conferring a structural polarity. Microtubules usually have 13 protofilaments but different protofilament numbers can be found in some organisms and specialized cells.

蛋白家族:

Belongs to the tubulin family.

功能:

Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain.

翻译修饰:

Some glutamate residues at the C-terminus are polyglutamylated, resulting in polyglutamate chains on the gamma-carboxyl group. Polyglutamylation plays a key role in microtubule severing by spastin (SPAST). SPAST preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity by SPAST increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold.

Some glutamate residues at the C-terminus are monoglycylated but not polyglycylated due to the absence of functional TTLL10 in human. Monoglycylation is mainly limited to tubulin incorporated into axonemes (cilia and flagella). Both polyglutamylation and monoglycylation can coexist on the same protein on adjacent residues, and lowering glycylation levels increases polyglutamylation, and reciprocally. The precise function of monoglycylation is still unclear (Probable).

Acetylation of alpha chains at Lys-40 is located inside the microtubule lumen. This modification has been correlated with increased microtubule stability, intracellular transport and ciliary assembly.

Methylation of alpha chains at Lys-40 is found in mitotic microtubules and is required for normal mitosis and cytokinesis contributing to genomic stability.

Nitration of Tyr-451 is irreversible and interferes with normal dynein intracellular distribution.

Undergoes a tyrosination/detyrosination cycle, the cyclic removal and re-addition of a C-terminal tyrosine residue by the enzymes tubulin tyrosine carboxypeptidase (VASH1 or VASH2) and tubulin tyrosine ligase (TTL), respectively.

Tyrosination promotes microtubule interaction with CAP-Gly domain-containing proteins such as CLIP1, CLIP2 and DCTN1. Tyrosination regulates the initiation of dynein-dynactin motility via interaction with DCTN1, which brings the dynein-dynactin complex into contact with microtubules. In neurons, tyrosinated tubulins mediate the initiation of retrograde vesicle transport.

Detyrosination is involved in metaphase plate congression by guiding chromosomes during mitosis: detyrosination promotes interaction with CENPE, promoting pole-proximal transport of chromosomes toward the equator. Detyrosination increases microtubules-dependent mechanotransduction in dystrophic cardiac and skeletal muscle. In cardiomyocytes, detyrosinated microtubules are required to resist to contractile compression during contraction: detyrosination promotes association with desmin (DES) at force-generating sarcomeres, leading to buckled microtubules and mechanical resistance to contraction (By similarity).

细胞定位:

Cytoplasm>Cytoskeleton.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
组织特异性:

Expressed at a high level in fetal brain.

亚基结构:

Dimer of alpha and beta chains. A typical microtubule is a hollow water-filled tube with an outer diameter of 25 nm and an inner diameter of 15 nM. Alpha-beta heterodimers associate head-to-tail to form protofilaments running lengthwise along the microtubule wall with the beta-tubulin subunit facing the microtubule plus end conferring a structural polarity. Microtubules usually have 13 protofilaments but different protofilament numbers can be found in some organisms and specialized cells. Interacts with SETD2; the interaction is independent on alpha-tubulin acetylation on Lys-40.

蛋白家族:

Belongs to the tubulin family.

研究领域

· Cellular Processes > Transport and catabolism > Phagosome.   (View pathway)

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Tight junction.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Gap junction.   (View pathway)

· Human Diseases > Infectious diseases: Bacterial > Pathogenic Escherichia coli infection.

文献引用

1). Discovery of galectin-8 as an LILRB4 ligand driving M-MDSCs defines a class of antibodies to fight solid tumors. Cell reports. Medicine, 2024 (PubMed: 38232701) [IF=14.3]

Application: WB    Species: Human    Sample: THP-1 cells

Figure 3 Gal-8-LILRB4 interaction activates STAT3 and inhibits NF-κB pathway (A) Immune blotting of 3 potential protein tyrosine phosphatases (PTPs) downstream of LILRB4. Among the 3 PTPs, the phosphorylation level of SHP1 was significantly affected by Gal-8. The statistical plot shows the pSHP1/SHP ratio. (B and C) Immune blotting demonstrates the phosphorylation level of NF-κB and STAT3 with or without Gal-8 treatment in THP-1 (B) and MV411(C) cells. (D) Immune blotting of nuclear and extranuclear proteins of Vector and LILRB4 KD THP-1 cells. (E) Immune blotting of human CD14+ cells treated with or without Gal-8 for 48 or 72 h. The results were constant with what was observed in THP-1 and MV411 cell lines. (F) Immune blotting of S100A8/9 and SOCS3 in human CD14+ cells treated with or without Gal-8. (G and H) Immune blotting of TRAF6 ubiquitination in THP-1 cells with or without LILRB4 KD (G) and with or without Gal-8 treatment (H). The immune blotting was detected with an anti-K63 Ubi antibody. (I) NF-κB reporter gene signal intensity in THP-1 cells cocultured with Gal-8-overexpressing HEK293 cells or control HEK293 cells for 3 days before reporter signals were detected. (J) Immune blotting of ADAM17 expression alteration in THP-1 cells treated with different concentrations of Gal-8 and in Vector and LILRB4-KD THP-1 cells. Of all the statistical analysis of immune blotting results, data were obtained from 3 biological replicates and represented as mean ± SEM.

2). 2,3′,4,4′,5-Pentachlorobiphenyl induces mitochondria-dependent apoptosis mediated by AhR/Cyp1a1 in mouse germ cells. Journal of Hazardous Materials, 2023 (PubMed: 37055962) [IF=13.6]

3). Silica Perturbs Primary Cilia and Causes Myofibroblast Differentiation during Silicosis by Reduction of the KIF3A-Repressor GLI3 Complex. Theranostics, 2023 (PubMed: 32042332) [IF=12.4]

Application: WB    Species: human    Sample: MRC-5 fibroblasts

Figure 5. KIF3A knockdown increases α-SMA-positive myofibroblasts among SiO2-activated MRC-5 fibroblasts. (A) Western blot showing the effects of NC-siRNA and KIF3A-siRNA on expression of KIF3A, Ac-α-Tub, and ARL13B proteins in MRC-5 fibroblasts. GAPDH was used as a loading control (n=3). (B) Densitometric analyses of KIF3A, Ac-α-Tub, and ARL13B protein expression in MRC-5 fibroblasts. *P<0.05; **P<0.01. Data are the mean±SD. Statistical analysis was performed using one-way ANOVA and SPSS 20.0. (C) IF assay showing primary cilia in MRC-5 fibroblasts treated with NC-siRNA or KIF3A-siRNA. Primary cilia were labelled with an anti-Ac-α-Tub antibody. Scale bar=25 and 5 μm. (D) Treatment regimen of KIF3A knockdown in MRC-5 fibroblasts. MRC-5 fibroblasts were stimulated with SiO2 or serum-free medium (n=3 per group) for 12 h, and then transfected with NC-siRNA or KIF3A-siRNA until 36 h. (E) Expression of α-SMA in MRC-5 fibroblasts measured by IF. Scale bar=100 μm. (F, G) Western blot and densitometric analyses of the effects of NC-siRNA and KIF3A-siRNA on expression of COL I, α-SMA, MRTF-A and SRF proteins in MRC-5 fibroblasts with or without SiO2 stimulation. α-Tub was used as a loading control (n=3). *P<0.05; **P<0.01. Data are the mean±SD. Statistical analysis was performed using one-way ANOVA and SPSS 20.0.

4). Psychologic Stress Drives Progression of Malignant Tumors via DRD2/HIF1α Signaling. CANCER RESEARCH, 2021 (PubMed: 34321238) [IF=11.2]

Application: WB    Species: mouse    Sample: tumor cells

Fig. 2. |DRD2 overexpression promotes the metastasis, invasion, tube formation, and cloning formation of tumor cells.J, Effect of DRD2 on the expression E-cadherin and vimentin detected by Western blot.

5). A marine-derived small molecule induces immunogenic cell death against triple-negative breast cancer through ER stress-CHOP pathway. International Journal of Biological Sciences, 2023 (PubMed: 35541893) [IF=9.2]

6). Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota. Food Chemistry, 2022 (PubMed: 35691061) [IF=8.8]

7). miRNA-92a-3p Regulates Osteoblast Differentiation in Patients with Concomitant Limb Fractures and Traumatic Brain Injury Through IBSP/PI3K-AKT Inhabitation. Molecular Therapy-Nucleic Acids, 2021 (PubMed: 33717654) [IF=8.8]

8). Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7, 8-dihydroxyflavone in female mice. Molecular Metabolism, 2021 (PubMed: 33352311) [IF=8.1]

Application: WB    Species:    Sample:

Figure 5. 7,8|-DHF transactivates ERα by activating its corresponding kinases ERK and Src. (A)Specific TrkB inhibitor, k252a, inhibits 7,8-DHF- or BDNF-induced phosphorylation of ERα at tyrosine 537 (p-Y537) but not at serine 118 (p-S118). Differentiated C2C12 myotubes were incubated with TrkB kinase inhibitor k252a (30 nmol/L) or vehicle for 1 h followed by BDNF (100 ng/mL) for 10 min, 1 h or 7,8-DHF (1 μmol/L) for 10 min, 1 h or 6 h. Cell lysates were then collected and the phosphorylation of TrkB (first panel), ERα (third and fourth panels), ERK (sixth panel), Src (eighth panel), AKT (tenth panel) was examined. Total TrkB (second panel), ERα (fifth panel), ERK (seventh panel), Src (ninth panel), AKT (eleventh panel), UCP1 (twelfth panel) and Tubulin (thirteenth panel) were also verified.

9). Semen hoveniae extract ameliorates alcohol-induced chronic liver damage in rats via modulation of the abnormalities of gut-liver axis. PHYTOMEDICINE, 2019 (PubMed: 30599911) [IF=7.9]

10). An integrated network pharmacology approach reveals that Ampelopsis grossedentata improves alcoholic liver disease via TLR4/NF-κB/MLKL pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology, 2024 (PubMed: 38981149) [IF=7.9]

加载更多

限制条款

产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)

产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。

产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。

Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。

产品仅供科学研究使用。不用于诊断和治疗。 

产品未经授权不得转售。

Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.