产品: | MAPK11 抗体 |
货号: | DF2358 |
描述: | Rabbit polyclonal antibody to MAPK11 |
应用: | WB IHC |
反应: | Human, Mouse |
预测: | Pig, Bovine, Horse, Chicken, Xenopus |
分子量: | 42 kDa; 41kD(Calculated). |
蛋白号: | Q15759 |
RRID: | AB_2839566 |
产品描述
*The optimal dilutions should be determined by the end user.
*Tips:
WB: 适用于变性蛋白样本的免疫印迹检测. IHC: 适用于组织样本的石蜡(IHC-p)或冰冻(IHC-f)切片样本的免疫组化/荧光检测. IF/ICC: 适用于细胞样本的荧光检测. ELISA(peptide): 适用于抗原肽的ELISA检测.
引用格式: Affinity Biosciences Cat# DF2358, RRID:AB_2839566.
展开/折叠
Human p38Beta MAP kinase mRNA complete cds; MAP kinase 11; MAP kinase p38 beta; MAPK 11; Mapk11; Mitogen activated protein kinase 11; Mitogen activated protein kinase p38 2; Mitogen activated protein kinase p38 beta; Mitogen-activated protein kinase 11; Mitogen-activated protein kinase p38 beta; MK11_HUMAN; p38 2; p38-2; p38B; p38Beta; P38BETA2; PRKM11; Protein kinase mitogen activated 11; SAPK2; SAPK2B; Stress activated protein kinase 2; Stress activated protein kinase 2b; Stress-activated protein kinase 2;
抗原和靶标
Highest levels in the brain and heart. Also expressed in the placenta, lung, liver, skeletal muscle, kidney and pancreas.
- Q15759 MK11_HUMAN:
- Protein BLAST With
- NCBI/
- ExPASy/
- Uniprot
MSGPRAGFYRQELNKTVWEVPQRLQGLRPVGSGAYGSVCSAYDARLRQKVAVKKLSRPFQSLIHARRTYRELRLLKHLKHENVIGLLDVFTPATSIEDFSEVYLVTTLMGADLNNIVKCQALSDEHVQFLVYQLLRGLKYIHSAGIIHRDLKPSNVAVNEDCELRILDFGLARQADEEMTGYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLQGKALFPGSDYIDQLKRIMEVVGTPSPEVLAKISSEHARTYIQSLPPMPQKDLSSIFRGANPLAIDLLGRMLVLDSDQRVSAAEALAHAYFSQYHDPEDEPEAEPYDESVEAKERTLEEWKELTYQEVLSFKPPEPPKPPGSLEIEQ
种属预测
score>80的预测可信度较高,可尝试用于WB检测。*预测模型主要基于免疫原序列比对,结果仅作参考,不作为质保凭据。
High(score>80) Medium(80>score>50) Low(score<50) No confidence
翻译修饰 - Q15759 作为底物
Site | PTM Type | Enzyme | Source |
---|---|---|---|
S143 | Phosphorylation | Uniprot | |
T180 | Phosphorylation | P52564 (MAP2K6) , Q15759 (MAPK11) | Uniprot |
Y182 | Phosphorylation | P52564 (MAP2K6) | Uniprot |
T185 | Phosphorylation | Uniprot | |
T241 | Phosphorylation | Q15759 (MAPK11) | Uniprot |
S243 | Phosphorylation | Uniprot | |
S261 | Phosphorylation | Q15759 (MAPK11) | Uniprot |
S272 | Phosphorylation | Uniprot | |
Y323 | Phosphorylation | Uniprot | |
S359 | Phosphorylation | Uniprot |
翻译修饰 - Q15759 作为激酶
Substrate | Site | Source |
---|---|---|
O00418 (EEF2K) | S396 | Uniprot |
O60381 (HBP1) | S402 | Uniprot |
O75582 (RPS6KA5) | S360 | Uniprot |
O75582 (RPS6KA5) | T581 | Uniprot |
O75582 (RPS6KA5) | T700 | Uniprot |
O75928 (PIAS2) | S113 | Uniprot |
O75928 (PIAS2) | S116 | Uniprot |
P00533 (EGFR) | S1039 | Uniprot |
P00533 (EGFR) | T1041 | Uniprot |
P04150 (NR3C1) | S226 | Uniprot |
P05787 (KRT8) | S74 | Uniprot |
P10636-8 (MAPT) | T50 | Uniprot |
P10636-8 (MAPT) | T69 | Uniprot |
P10636-8 (MAPT) | T153 | Uniprot |
P10636-8 (MAPT) | S202 | Uniprot |
P10636-8 (MAPT) | T205 | Uniprot |
P10636-8 (MAPT) | S235 | Uniprot |
P10636-8 (MAPT) | S404 | Uniprot |
P10636-8 (MAPT) | S422 | Uniprot |
P13807 (GYS1) | S645 | Uniprot |
P13807 (GYS1) | S653 | Uniprot |
P13807 (GYS1) | T721 | Uniprot |
P13807 (GYS1) | S727 | Uniprot |
P15923 (TCF3) | S139 | Uniprot |
P16949 (STMN1) | S25 | Uniprot |
P17544 (ATF7) | T51 | Uniprot |
P30281 (CCND3) | T283 | Uniprot |
P30305 (CDC25B) | S249 | Uniprot |
P41235 (HNF4A) | S167 | Uniprot |
P42224 (STAT1) | S727 | Uniprot |
Q01094 (E2F1) | S403 | Uniprot |
Q01094 (E2F1) | T433 | Uniprot |
Q01844 (EWSR1) | T79 | Uniprot |
Q02156 (PRKCE) | S350 | Uniprot |
Q14934 (NFATC4) | S168 | Uniprot |
Q14934 (NFATC4) | S170 | Uniprot |
Q15672 (TWIST1) | S68 | Uniprot |
Q15759 (MAPK11) | T180 | Uniprot |
Q15759 (MAPK11) | T241 | Uniprot |
Q15759 (MAPK11) | S261 | Uniprot |
Q8IW41-1 (MAPKAPK5) | T182 | Uniprot |
Q8N122 (RPTOR) | S771 | Uniprot |
Q8N122 (RPTOR) | S863 | Uniprot |
Q92945 (KHSRP) | T692 | Uniprot |
研究背景
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK11 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK11 functions are mostly redundant with those of MAPK14. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Additional examples of p38 MAPK substrates are the FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment.
Dually phosphorylated on Thr-180 and Tyr-182 by MAP2K3/MKK3, MAP2K4/MKK4 and MAP2K6/MKK6, which activates the enzyme.
Cytoplasm. Nucleus.
Highest levels in the brain and heart. Also expressed in the placenta, lung, liver, skeletal muscle, kidney and pancreas.
Interacts with HDAC3 and DUSP16.
The TXY motif contains the threonine and tyrosine residues whose phosphorylation activates the MAP kinases.
Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.
研究领域
· Cellular Processes > Cell growth and death > Cellular senescence. (View pathway)
· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells. (View pathway)
· Environmental Information Processing > Signal transduction > MAPK signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > Rap1 signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > FoxO signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway. (View pathway)
· Environmental Information Processing > Signal transduction > TNF signaling pathway. (View pathway)
· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.
· Human Diseases > Neurodegenerative diseases > Amyotrophic lateral sclerosis (ALS).
· Human Diseases > Infectious diseases: Bacterial > Epithelial cell signaling in Helicobacter pylori infection.
· Human Diseases > Infectious diseases: Bacterial > Shigellosis.
· Human Diseases > Infectious diseases: Bacterial > Salmonella infection.
· Human Diseases > Infectious diseases: Bacterial > Pertussis.
· Human Diseases > Infectious diseases: Parasitic > Leishmaniasis.
· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).
· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.
· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.
· Human Diseases > Infectious diseases: Viral > Hepatitis C.
· Human Diseases > Infectious diseases: Viral > Influenza A.
· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.
· Human Diseases > Cancers: Overview > Proteoglycans in cancer.
· Organismal Systems > Circulatory system > Adrenergic signaling in cardiomyocytes. (View pathway)
· Organismal Systems > Development > Osteoclast differentiation. (View pathway)
· Organismal Systems > Immune system > Platelet activation. (View pathway)
· Organismal Systems > Immune system > Toll-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > NOD-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > RIG-I-like receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > IL-17 signaling pathway. (View pathway)
· Organismal Systems > Immune system > Th1 and Th2 cell differentiation. (View pathway)
· Organismal Systems > Immune system > Th17 cell differentiation. (View pathway)
· Organismal Systems > Immune system > T cell receptor signaling pathway. (View pathway)
· Organismal Systems > Immune system > Fc epsilon RI signaling pathway. (View pathway)
· Organismal Systems > Immune system > Leukocyte transendothelial migration. (View pathway)
· Organismal Systems > Nervous system > Neurotrophin signaling pathway. (View pathway)
· Organismal Systems > Nervous system > Retrograde endocannabinoid signaling. (View pathway)
· Organismal Systems > Nervous system > Dopaminergic synapse.
· Organismal Systems > Sensory system > Inflammatory mediator regulation of TRP channels. (View pathway)
· Organismal Systems > Endocrine system > Progesterone-mediated oocyte maturation.
· Organismal Systems > Endocrine system > Prolactin signaling pathway. (View pathway)
· Organismal Systems > Endocrine system > Relaxin signaling pathway.
限制条款
产品的规格、报价、验证数据请以官网为准,官网链接:www.affbiotech.com | www.affbiotech.cn(简体中文)| www.affbiotech.jp(日本語)产品的数据信息为Affinity所有,未经授权不得收集Affinity官网数据或资料用于商业用途,对抄袭产品数据的行为我们将保留诉诸法律的权利。
产品相关数据会因产品批次、产品检测情况随时调整,如您已订购该产品,请以订购时随货说明书为准,否则请以官网内容为准,官网内容有改动时恕不另行通知。
Affinity保证所销售产品均经过严格质量检测。如您购买的商品在规定时间内出现问题需要售后时,请您在Affinity官方渠道提交售后申请。产品仅供科学研究使用。不用于诊断和治疗。
产品未经授权不得转售。
Affinity Biosciences将不会对在使用我们的产品时可能发生的专利侵权或其他侵权行为负责。Affinity Biosciences, Affinity Biosciences标志和所有其他商标所有权归Affinity Biosciences LTD.